→ График понижение температуры замерзания водных растворов. Понижение температуры замерзания растворов

График понижение температуры замерзания водных растворов. Понижение температуры замерзания растворов

Криосохранение крупных биологических объектов

Наиболее интригующая область приложения криобиологии – науки о влиянии низких и сверхнизких температур на биологические объекты – поиск возможностей сохранения живых организмов или отдельных органов в состоянии глубокой заморозки. Методика криосохранения отдельных клеток или, например, эмбрионов разработана неплохо, но обратимое (т.е. с сохранением жизнеспособности после размораживания) замораживание крупных объектов наталкивается на серьезные препятствия. Основная трудность состоит в том, что при больших объеме и массе трудно добиться равномерного охлаждения. Неравномерное же замерзание приводит к серьезным и необратимым повреждениям клеток и тканей. Между тем решение этой проблемы могло бы помочь, например, созданию банка органов для трансплантации и тем самым спасти жизнь тысячам больных. Еще более заманчивой выглядит возможность сохранения в состоянии глубокого охлаждения тяжелобольного – до тех пор, пока медицина не окажется в состоянии ему помочь, может быть, через десятилетия.

Наибольшую опасность при замораживании представляет механическое повреждение мембран клеток образующимися кристаллами льда. Образуясь как вне, так и – что гораздо опаснее – внутри клеток, они разрывают липидный бимолекулярный слой, формирующий эти мембраны.

Для защиты клеток от повреждения при замораживании используют специальные вещества – криопротекторы. Они делятся на две группы: проникающие внутрь клетки, или эндоцеллюлярные (диметилсульфоксид (ДМСО), ацетамид, пропиленгликоль, глицерин, этиленгликоль), и не проникающие или экзоцеллюлярные (полиэтиленгликоли и полиэтиленоксиды, фиколл, сахароза, трегалоза и др.), которые действуют снаружи, осмотически вытягивая из клетки воду.

Последнее выгодно: чем меньше в клетке останется воды, тем меньше потом образуется льда. Но удаление воды приводит к повышению концентрации остающихся внутри клетки солей – вплоть до значений, при которых происходит денатурация белка. Эндоцеллюлярные же криопротекторы не только снижают температуру замерзания, но и разбавляют образующийся при кристаллизации «рассол», не давая белкам денатурироваться.

Наиболее широкое применение нашли глицерин и ДМСО. При добавлении их к воде температура ее замерзания понижается, достигая низшего значения при соотношении примерно 2:1. Эта наиболее низкая температура называется эвтектической , или криогидратной . При дальнейшем же охлаждении таких смесей размеры образующихся кристаллов льда оказываются столь мелкими (сравнимыми с размером кристаллической ячейки), что они не наносят значительных повреждений структурам клеток.

Если бы можно было довести концентрацию криопротектора в живых тканях до эвтектической, это позволило бы полностью решить проблему повреждения тканей ледяными кристаллами. Однако при таких концентрациях любые известные криопротекторы оказываются токсичными.

На практике используют концентрации криопротекторов значительно меньшие, чем эвтектические, – и при этом часть воды все же замерзает. Так при использовании 27%-ного раствора глицерина 40% присутствующей в клетке воды образует с глицерином эвтектическую смесь, остальная же ее часть замерзает. Однако, как показали эксперименты, проведенные в 1954–1960 гг. английским криобиологом Одри Смит, золотистые хомячки способны выживать в ситуации, когда в лед превращалось до 50–60% воды, содержащейся в тканях их головного мозга!

Большое значение для решения проблемы обратимого замораживания имеет скорость охлаждения. При медленном охлаждении (в парах жидкого азота или в специальных программных замораживателях) кристаллы льда образуются в основном в межклеточном пространстве. По мере охлаждения они растут, оттягивая на себя воду из клеток. Как уже было сказано, это позволяет существенно уменьшить повреждения, наносимые кристаллами клеткам, – но и концентрация солей внутри клеток значительно возрастает, повышая риск денатурации белков.

К сожалению, оптимальные скорости понижения температуры, при которых достигается компромисс между повреждающими действиями кристаллов льда и высокими концентрациями растворенных веществ, для разных типов клеток сильно различаются. Различны также и оптимальные для них концентрации криопротекторов. Это сильно затрудняет криосохранение органов и тканей, включающих несколько различных типов клеток, а тем более – целых организмов.

При быстром охлаждении (например, опускании образца в жидкий азот) вода не успевает продиффундировать из клеток наружу; кристаллы образуются как вне, так и внутри клеток, но за счет более быстрого охлаждения они оказываются значительно мельче, чем в первом случае, и успевают образоваться не во всех клетках. Токсичных концентраций солей при этом удается избежать, а продолжительность их воздействия оказывается меньше, как и продолжительность вредного воздействия криопротекторов. Последнее позволяет использовать более высокие их концентрации.

При достаточно быстром охлаждении до 0 °С и несколько ниже вода замерзает (кристаллизуется) не сразу. Сначала образуется переохлажденная жидкость. В упомянутых экспериментах Смит ей в отдельных случаях удавалось охладить золотистых хомячков до –6 °С без образования кристаллов льда. При этом кожа и конечности животных оставались мягкими. А после согревания хомячки оживали без видимых вредных последствий. Беременные самки (если переохлаждение имело место в первой половине срока беременности) приносили нормальных детенышей.

Существует методика проведения хирургических операций на новорожденных детенышах мелких млекопитающих – например, мышатах. Наркоз в таком возрасте практически неприменим, и поэтому детенышей в течение 15–20 минут просто охлаждают до потери подвижности и чувствительности. Известен случай, когда при проведении таких исследований (влияние удаления вомероназального органа на поведение грызунов) в лаборатории одного из московских институтов нескольких новорожденных детенышей джунгарского хомячка по небрежности экспериментатора просто забыли лежащими на ватной подстилке в камере с температурой –12 °С. После извлечения – через 2–3 часа – они были совершенно твердыми, и их тела в буквальном смысле «издавали деревянный стук». Через некоторое время при комнатной температуре детеныши ожили, начали двигаться и издавать звуки...

Жидкости в организме начинают замерзать обычно при –1... –3 °С. Однако по мере того, как часть воды превращается в лед, концентрация растворенных веществ в оставшейся жидкости возрастает и температура замерзания этой жидкости продолжает снижаться.

Температура полного замерзания различных биологических жидкостей сильно варьирует, но в любом случае оказывается ниже –22...–24 °С.

Вероятность образования «зародыша» кристалла льда за единицу времени в переохлажденной жидкости пропорциональна объему этой жидкости и сильно зависит от температуры: при –40 °С и при давлении в 1 атм. кристаллизация чистой воды происходит практически мгновенно, но при еще более низких температурах (порядка –70 °С скорость роста кристаллов замедляется за счет увеличения вязкости воды. Наконец, при температуре примерно –130 °С рост кристаллов полностью приостанавливается. Если охлаждать жидкость достаточно быстро, чтобы «проскочить» температуру активной кристаллизации прежде, чем успеют сформироваться кристаллы опасного размера, вязкость возрастает настолько, что образуется твердое стеклообразное вещество. Это явление называется стеклованием или витрификацией .

Если удастся охладить клетки или ткани до температуры стеклования, они смогут сохраняться в таком состоянии неограниченно долго, а полученные при этом повреждения окажутся несравненно меньше, чем при охлаждении с кристаллизацией. Собственно, это и явилось бы решением проблемы сохранения биологических объектов в состоянии глубокой заморозки. Правда, при оттаивании клеток для их оживления придется снова проходить опасный участок температур...

Скорость роста ледяных кристаллов в клетке может быть понижена за счет добавления к воде примесей, повышающих ее вязкость, – того же глицерина, сахаров и др. Кроме того, существуют вещества, блокирующие образование кристалликов льда. Такими свойствами обладают, например. специальные белки, вырабатываемые организмами ряда холодоустойчивых животных – арктических и антарктических рыб, некоторых насекомых и др. Молекулы этих веществ имеют участки, обладающие комплементарностью к поверхности кристаллика льда, – «садясь» на эту поверхность, они приостанавливают его дальнейший рост.

При охлаждении крупных (по сравнению с клеткой – от 1 мм и больше) объектов внутри них возникают, как правило, значительные градиенты температуры. Сначала замерзают внешние слои, и формируется так называемый фронт кристаллизации, движущийся снаружи внутрь. Концентрация растворенных в воде солей и других веществ перед этим фронтом резко увеличивается. Это приводит к денатурации белков и повреждениям других макромолекул клетки. Другой проблемой оказывается растрескивание тканей. Его причина – неравномерное и неоднородное охлаждение, особенно в ситуации, когда наружные слои затвердевают раньше внутренних.

Еще в 60-е гг. ХХ в. была предложена идея использовать для управления кристаллизацией воды высокое давление. Идея эта основана на понижении температуры фазового перехода вода/лед при повышении давления. При 2045 атм. температура кристаллизации чистой воды составляет –22 °С. Бoльшего снижения температуры замерзания достичь таким образом не удается – при дальнейшем росте давления она начинает вновь повышаться.

Еще в 1967 г. американец М.Д. Персидски и его коллеги поставили эксперименты по замораживанию почек собаки. Исследователи подвергали почки перфузии 15%-ным раствором диметилсульфоксида (перфузия – введение веществ в биологический объект через систему кровеносных сосудов), после чего охлаждали их с одновременным повышением давления, так чтобы в каждый конкретный момент температура не была ниже точки замерзания, соответствующей данному давлению. Когда минимальное значение температуры (в данном случае, благодаря присутствию криопротектора оно составило около –25 °С) было достигнуто, давление снижали.

При быстром снятии давления переохлажденная до такой температуры жидкость может существовать не более нескольких секунд, после чего происходит спонтанная кристаллизация. Но кристаллы, образующиеся при этом, равномерно распределены по объему образца, и фронта кристаллизации не возникает, также как и неравномерного повышения концентрации солей. Кроме того, кристаллы, возникающие в этом случае, имеют малые размеры и зернистую форму и поэтому наносят клеткам сравнительно малые повреждения.

Однако в ходе процесса кристаллизации выделяется значительное количество тепла (скрытая теплота кристаллизации), в результате чего образец нагревается – в конечном счете до температуры кристаллизации, т.е. при снижении давления до атмосферного – примерно до 0 °С. После чего процесс замерзания, естественно, останавливается. В итоге при снятии давления кристаллизоваться успевало всего лишь около 28% воды, а остальная ее часть оставалась жидкой.

Для того, чтобы кристаллизовалась вся вода, нужно было бы перед снижением давления охладить образец до температуры примерно –80 °С – однако в этом случае лед начал бы образовываться гораздо раньше. М.Персидски решил проблему путем циклического приложения давления. Разогревшийся до 0 °С после первого снятия давления образец начинали охлаждать вновь – одновременно с повторным повышением давления. При очередном его «сбросе» успевала замерзнуть следующая порция жидкости, и т.д. В результате удалось достичь практически полной и «безвредной» кристаллизации воды, после чего температуру можно было уже безбоязненно понизить до
–130 °С (и ниже) при обычном атмосферном давлении и сохранять почку в таком состоянии неограниченно долго.

При оттаивании цикл повторяли в обратном порядке: почку разогревали до –28 °С, после чего повышали давление до 2000 атм. При этом происходило относительно равномерное по объему таяние ледяных кристаллов. Затем образец постепенно разогревали с одновременным снижением давления.

Сохраненные таким образом почки, по словам авторов эксперимента, «проявляли меньше признаков повреждения тканей, чем почки, замороженные любым другим способом» – хотя и не сохраняли жизнеспособность...

В дальнейшем техника замораживания при высоком давлении использовалась при подготовке биологических образцов для микроскопических исследований. Для того, чтобы сделать достаточно тонкий срез, образец нужно предварительно перевести в твердое состояние, однако при обычной заморозке структуры клеток при этом повреждаются настолько, что изучать оказывается практически нечего...

Давление в несколько тысяч атмосфер с успехом используется при замораживании продуктов в пищевой промышленности. При этом преследуются две цели. Во-первых, после долгого (а значит, при максимально низкой температуре) хранения вкус замороженного продукта должен как можно меньше отличаться от свежего. Для этого также важно, чтобы при заморозке не были разрушены клетки, что может быть в определенной степени достигнуто замораживанием при давлении около 2 тыс. атм. Другая цель – одновременная стерилизация продукта, которая достигается, напротив, разрушением клеток присутствующих в нем бактерий. Для этого необходимо уже гораздо более высокое давление – в 6 тыс. атм. и больше.

О новых же попытках использовать высокое давление для обратимого сохранения органов или целых организмов авторам неизвестно, а между тем этот путь кажется весьма перспективным. Разумеется, встает вопрос о повреждающем воздействии высокого давления. Известно, что при постепенном его повышении до примерно 500 атм. жизнеспособность клеток не снижается. При 6000 атм. и более практически все клетки погибают, а вот промежуточные значения могут оказывать различный эффект, в зависимости от типа и состояния клеток, содержания в них воды, солей и других веществ, температуры и т. д.

Однако можно рассчитывать, что постепенное повышение давления до необходимых 2 тыс. атм. не приведет к повреждению организма. Ведь в ходе подготовки к заморозке объект сначала охлаждается примерно до 0 °С (если это живое существо – оно перестает дышать) и помещается в заполненную жидкостью камеру. В 1961 г. американский исследователь С.Джейкоб в течение 30 минут подвергал давлению около 1000 атм. сердце собаки, только что вынутое из тела и продолжавшее сокращаться. После снятия давления сердцебиение возобновлялось.

Важно также, что некоторые вещества-криопротекторы оказываются одновременно и баропротекторами, т. е. защищают клетки и от воздействия высокого давления. «Хороший» криопротектор не только снижает температуру замерзания раствора, но и стабилизирует клеточные мембраны, делая их более эластичными.

Конечно, необходимо решить еще целый ряд проблем: в ходе экспериментов отработать оптимальный режим охлаждения, подобрать конкретные криопротекторы и т. д. Например, при прохождении циклов «сжатие с охлаждением – снятие давления» охлаждение происходит только с поверхности объекта. Это приводит к тому, что на периферии лед будет образовываться, тогда как в центре может, наоборот, происходить таяние уже имеющегося льда за счет повышения давления. Бороться с этим можно, как понижая температуру медленнее (и позволяя объекту охлаждаться более равномерно), так и повышая концентрацию веществ-криопротекторов в наружных слоях. При этом не обязательно повышать давление до максимальных значений. Можно, увеличив число циклов, оставаться в пределах заведомо безопасных 500–1000 атмосфер.

К тому же, как показали эксперименты Смит с золотистыми хомячками, для обратимого криосохранения может оказаться достаточно витрификации всего около 40% воды (и кристаллизации остальной части).

Так что имеющиеся данные вполне позволяют надеяться на использование высоких давлений для управления кристаллизацией свободной воды и криосохранения крупных биологических объектов-органов и даже целых организмов. Работы в этом направлении ведутся в Институте биофизики клетки РАН (Лаборатория криоконсервации генетических ресурсов под руководством Э.Н. Гаховой) совместно с Институтом биомедицинских технологий и ГосНИИ ВТ им. С.А. Векшинского.

Замерзание представляет собой фазовый переход, при котором происходит превращение жидкости в твердое вещество. Температурой замерзания 9кристаллизации) жидкости называют ту температуру, при которой давление насыщенного пара над жидкостью равно давлению насыщенного пара над выпадающими из нее кристаллами твердой фазы.

При этой температуре и соответствующем ей давлении насыщенного пара скорость кристаллизации равна скорости плавления и обе эти фазы могут сосуществовать в течение длительного времени.

Еще М.В. Ломоносов заметил, что разбавленный раствор замерзает при температуре более низкой, чем чистый растворитель. Так, морская вода замерзает не при 273 К, а при несколько более низкой температуре. Многочисленные эксперименты показали, что такое изменение температуры замерзания раствора можно рассматривать как общее правило.

Процессы замерзания и кипения были детально изучены Раулем и представлены в виде закона, который в последствии был назван вторым законом Рауля.

рассмотрим простейший вывод этого закона. На рис.2 показана диаграмма, выражающая зависимость давления насыщенног пара от температуры над чистым растворителем и над раствором.


Кривая 0А – зависимость давления насыщенного пара чистой воды от температуры.

Кривая ВС, ДЕ – зависимость давления насыщенного пара воды над растворами с различными концентрациями растворенного вещества

0Д – выражает температурную зависимость давления насыщенного пара воды над льдом.

Из рис.2 видно, что давление пара над раствором при 273 К ниже, чем над водой, но оно не равно давлению пара над льдом при той же температуре. Лишь при температуре ниже 273 К (Т’з) давление пара над раствором уменьшается настолько, что становится равным давлению пара над льдом. Этому соответствует точка В. При более высоких концентрациях раствора кривые, выражающие зависимость давления пара воды над раствором от температуры, располагаются ниже кривой ВС, но параллельно ей.

Введем следующий обозначения:

Р 0 А – давление пара над чистым растворителем при 273 К

Р А – давление пара над раствором при температуре его замерзания Т’ з

Из прямоугольного треугольника ВОК определяем

Из рисунка 2 видно, что , где - понижение температуры замерзания раствора.

Подставляя эти значения в выше записанное уравнение, получим

(3)

Из первого закона Рауля для сильно разбавленных растворов имеем

и (4)

где n А, n В, m А сохраняют ранее присвоенные обозначения (см. выше). Если через М 0 А обозначить молярную массу растворителя, то

При подстановке этого выражения в уравнение (4) получим

Умножим и разделим правую часть этого выражения на 1000, тогда

(5)

Объединим все постоянные величины в уравнении (5) в одну постоянную К (), получим следующее выражение

(6)

Выражение представляет собой моляльность раствора Св.

Подставив это выражение в уравнение (6), получим окончательное уравнение.

(7)

Это и есть математическое выражение второго закона Рауля: понижение температуры замерзания или повышение температуры кипения растворов прямо пропорционально его моляльной концентрации.

Коэффициент К в уравнении (7) носит название криоскопической постоянной, показывает молярное понижение температуры замерзания раствора, является индивидуальной характеристикой растворителя (К Н2О =1,86º) и имеет ту же размерность, что и Е (Кº·кг·моль -1)

Метод исследования, основанный на измерении понижения температуры замерзания растворов, называется криоскопическим. Он также, как и эбуллиоскопический позволяет вычислить молярную массу растворенного вещества

На рис.3 изображен прибор, предназначенный для измерения температуры замерзания растворов.


ОСМОС И ОСМОТИЧЕСКОЕ ДАВЛЕНИЕ .

Весьма важным в биологическом отношении свойством растворов является осмос.

В природе часто растворы отделяются от растворителя мембранами, проницаемыми лишь дл я частиц растворителя. В этом случае растворенное вещество диффундировать в растворитель не может, и будет наблюдаться только переход растворителя в в раствор, т.е. растворитель будет перемещаться в обоих направлениях, но все же в раствор его будет переходить немного больше, чем в обратном направлении.

Механизм осмоса легко представить на основе изотермической перегонки. Пусть полупроницаемая мембрана, имеющая микропоры, разделяет растворитель и раствор с концентрацией С в (рис.4)

В пору, ограниченную с одной стороны растворителем, а с другой раствором, идет испарение. Вследствие повышения по закону Рауля упругости насыщенного пара со стороны растворителя из парообразной фазы концентрируется, переходя в раствор.



В результате осмоса увеличивается объем раствора, и его концентрация постепенно снижается; проникающий через мембрану в раствор растворитель увеличивает столб жидкости h и, следовательно, повышает гидростатическое давление (см. рис.5). Одновременно будет возрастать число молекул растворителя, перемещающихся через мембрану в обратном направлении, т.е. из раствора в растворитель. постепенно гидростатическое давление и разбавление раствора достигнут величин, при которых количество молекул растворителя, перемещающихся в обоих направлениях, уравняется и наступит осмотическое равновесие. Развившееся в результате осмоса избыточное гидростатичекое давление, измеряемое столбом раствора высотой h, при котором устанавливается осмотическое равновесие, называют осмотическим давлением.

рис. 5

Полупроницаемыми для многих растворов являются мембраны из коллодия, целлофана, железистосинеродистой меди и др.

ЗАКОНЫ ОСМОТИЧЕСКОГО ДАВЛЕНИЯ .

Изучение законов осмотического давления выявило их полную аналогию с газовыми законами. Для разбавленных растворов неэлектролитов их можно сформулировать так:

при постоянной температуре осмотическое давление прямо пропорционально молярной концентрации растворенного вещества (аналогия с законом Бойля-Мариотта):

при постоянной молярной концентрации осмотическое давление прямо пропорционально абсолютной температуре (аналогия с законом Гей-Люссака):

Из двух этих законов следует, что при одинаковых молярных концентрациях и температуре растворы разных неэлектролитов создают одинаковое осмотическое давление, т.е. эквимолярные растворы неэлектролитов изотоничны (аналогия с законом Авогадро).

Вант-Гоффом был предложен объединенный закон для осмотического давления в растворах (аналогично объединенного газовому закону Менделеева-Клайперона): Осмотическое давление разбавленных растворов неэлектролитов прямо пропорционально молярной концентрации, коэффициенту пропорциональности и абсолютной температуре:

так как с=n/V, где n – число молей неэлектролита, а V – объем раствора, то или

Из графика (см. рисунок 3)также видно, что температура кипения раствора выше температуры кипения чистого растворителя. Под температурой кипения под­разумевается та температура, при которой давление насыщенного пара равно внешнему давлению. Поэтому она различна: для чистой воды – это температу­ра Т 1 , а для раствора – Т 2 .

Для разбавленных растворов при понижении температуры (см. рисунок 3)первым начинает кристаллизоваться чистый растворитель. Это происходит тогда, когда давление пара над раство­ром станет равно насыщенному пару над кристаллом (линия О–В). Температура начала кристаллизации для раствора состава С 1 соответствует температуре Т 3 , а для состава С 2 – Т 4 . При увеличении концентрации растворенного вещества температура замерзания уменьшается, что также хорошо видно на Р–Т–диаграмме (см. рисунок 3).

Кривые давления пара над растворами тем больше удалены от соответ­ствующей кривой воды, чем концентрированнее раствор. Поэтому и разность между температурами кипения или замерзания воды и раствора тем больше, чем выше концентрация раствора.

Изучая замерзание и кипение растворов, Рауль установил, что для разбавлен­ных растворов неэлектролитов повышение температуры кипения и понижение температуры замерзания пропорциональны концентрации раствора.

Второй закон Рауля: повышение темпе­ратуры кипения (понижение температуры замер­зания) раствора по сравнению с температурой кипения (замерзания) растворителя пропорционально моляльной концентрации раство­ренного вещества.

Математически эти изменения температуры можно рас­считать по формулам:

;

;

где К Э – эбулиоскопическая (от лат. ebullire – кипеть) постоянная растворителя; К КР – криоскопическая (от греч. сrios – холод) постоянная растворителя; – повышение температуры ки­пения; – понижение температуры замерзания; С m – моляльная концентрация растворенного вещества.

Если расписать С m , то формулы примут вид:

Физический смысл эбулиоскопической и криоскопической по­стоянных определяется следующим образом. Их числовые значения показывают, на сколько градусов выше кипит и на сколько градусов ниже замерзает одномоляльный ра­створ (содержащий 1 моль растворенного вещества в 1000 г растворителя) по сравнению с температурами кипения и за­мерзания чистого растворителя. Единицы измерения – 1 град·моль -1 ·кг.



Эбулиоскопическая и криоскопическая константы не зависят от природы растворенного вещества, а являются характеристиками ра­створителя. Их значения для некоторых растворителей приведены в таблице 1.

Таблица 1 – Криоскопические и эбулиоскопические константы некоторых растворителей

На измерениях температур кипения и замерзания растворов основаны эбулиоскопический и криоскопический методы определения молекулярных масс ве­ществ. Эти два метода широко используются в химии, так как, применяя различные растворители, можно определять молекулярные массы разнообразных веществ.

Для определения молярной массы растворенного вещества удобно пользоваться следующим со­отношением:

где – повышение температуры кипения или понижение температу­ры замерзания раствора по сравнению с соответствующими характери­стиками чистого растворителя;

К – эбулиоскопическая или криоскопическая константа.

Способность растворов замер­зать при более низкой температуре, чем растворитель, используется при приготовлении низкозамерзающих растворов, которые называют­ся антифризами. Антифризами заменяют воду в радиаторах автомобильных и авиационных моторов в зимнее время. В качестве основных компонентов могут быть использованы т. н. многоатомные спирты – этиленгликоль и глицерин:

СН 2 - СН 2 СН 2 - СН 2 - СН 2

ОН ОН ОН ОН ОН

этиленгликоль глицерин

Водный раствор этиленгликоля (58-процентный по массе), например, замерзает только при температуре минус 50 °С.

Осмос

Самопроизвольный переход раствори­теля через полупроницаемую мембрану, разделяющую раствор и рас­творитель или два раствора с различной концентрацией растворенно­го вещества, называется осмосом . Осмос обусловлен диффузией молекул растворителя через полупроницаемую перегородку, которая пропускает только молекулы растворителя. Молекулы растворителя диффундируют из растворителя в раствор или из менее концентриро­ванного раствора в более концентрированный, поэтому концентриро­ванный раствор разбавляется, при этом увеличивается и высота его столба h (рисунок 4).

При равновесии внешнее давление уравновешивает осмотическое давление. В этом случае скорости прямого и обратного переходов молекул через полупроницаемую перегородку становятся одинаковыми. Если внешнее давление, приложенное к более концентрированному раствору, выше осмотического p, т. е. р > p, то скорость перехода молекул растворителя из концентрированного раствора будет больше, и растворитель будет переходить в разбавленный раствор (или чистый растворитель). Этот процесс, называемый обратным осмосом , используется для очистки природных и сточных вод, для получения питьевой воды из морской.

Количественно осмос характеризуется осмотическим давлением, равным силе, приходящейся на единицу площади поверхности, и заставляющей молекулы растворителя проникать че­рез полупроницаемую перегородку. Осмотическое давление возрастает с увеличением концен­трации растворенного вещества и температуры. Вант-Гофф предпо­ложил, что для осмотического давления можно применить уравне­ние состояния идеального газа:

где p – осмотическое давление, кПа; с - молярная концентрация раствора, моль/л; R – универсальная газовая постоянная, Т – абсолютная температура.

Осмос играет очень важную роль в био­логических процессах, обеспечивая поступ­ление воды в клетки и другие структуры. Растворы с одинаковым осмотическим дав­лением называются изотоническими. Если осмотическое давление выше внутри­клеточного, то оно называется гиперто­ническим, если ниже внутриклеточного – гипотоническим. Например, среднее осмотическое давление крови при 36 °С равно 780 кПа. Гипертонические растворы сахара (сироп) и соли (рассол) широко применяются для консервирования продуктов, так как вызыва­ют удаление воды из микроорганизмов.

Примеры решения задач

Перед решением задач следует уяснить следующее:

– температура замерзания раствора ниже температуры замерзания растворителя

– температура кипения раствора выше температуры кипения растворителя

– величина всегда положительная и изменение температуры по шкале Цельсия и термодинамической шкале Кельвина численно совпадают, т. е. и .

Пример 1. Определение температуры кипения и температуры замерзания неэлектролита.

Определить температуру кипения и температуру замерзания 2-процентного раствора нафталина (С 10 Н 8) в бензоле.

Решение

На основании второго закона Рауля можно записать:

Значение эбулиоскопической константы бензола, а также температуры кипения и замерзания бензола возьмем из таблицы 1. М (С 10 Н 8) = 128 г/моль. Вспомним, что процентная концентрация показывает число граммов растворенного вещества в 100 г раствора, значит масса нафталина – 2 г, а масса растворителя, т. е. бензола, 100 – 2 = 98 г. Тогда, подставив известные величины в уравнение, по­лучим

Поскольку чистый бензол кипит при 80,1 °С, а повышение температуры составляет 0,4 °С, то температура кипения раствора нафталина в бензоле составляет 80,5 °С.

Температура замерзания этого раствора определяется таким же образом:

Температура замерзания бензола 5,5 °С. Понижение температуры составляет 0,8 град, следовательно, температура замерзания 2-процентного раствора нафталина в бензоле составляет 4,7 °С.

Пример 2. Определение концентрации неэлектролита по температуре кристаллизации (кипения) растворов.

Определите массовую долю сахарозы С 12 Н 2 20 11 в воде, если известно, что температура замерзания этого раствора составляет минус 0,21 °С.

Решение.

Из данных задачи следует, что град. Для определения массовой доли сахарозы в растворе воспользуемся уравнением

в которое подставим известные величины: К КР – криоскопическую константу, К КР = 1,86 град·моль -1 ·кг, и молярную массу саха­розы М(С 12 Н 2 20 11) = 342 г/моль. Отношение

представляет собой массу растворенного вещества, приходящуюся на 1000 г растворителя, тогда

На 1000 г растворителя приходится 38,6 г сахарозы, поэтому для оп­ределения массовой доли растворенного вещества можно восполь­зоваться формулой

или составить пропорцию:

1038,6 г раствора содержит 38,6 г сахарозы;

100 г раствора – хг сахарозы.

Следовательно, массовая доля растворенного вещества состав­ляет 3,71 %.

Пример 4. Опре­деление молярной массы неэлектролита по температуре кристаллизации (кипения).

Раствор неэлектролита содержит 2,5 г растворенно­го вещества в 25 г бензола и замерзает при температуре 4,3 °С. Опре­делить молярную массу растворенного вещества.

Решение

Используя данные условия задачи и температуру за­мерзания бензола плюс 5,5°С, определим град. Молярную массу растворенного вещества можно опре­делить из соотношения

где К КР – криоскопическая константа бензола, К КР = 5,12 град·моль -1 ·кг.

г/моль .

Контрольные вопросы

1 Какое давление называется давлением насыщенного пара?

2 Запишите математические выражения каждого закона Рауля и объясните физический смысл величин, входящих в эти выражения.

3 Одинаковые навески мочевины CO(NH 2) 2 и сахарозы C 12 H 22 O 11 растворили в оди­наковом количестве воды в одинаковых условиях. Для какого из ра­створов значение будет больше?

4 Одинаково ли понижение температуры замерзания 0,1 М водных растворов глюкозы С 6 Н 12 О 6 и мочевины CO(NH 2) 2 ?

Задача 1. На сколько градусов повысится температура кипения водного раствора мочевины CO(NH 2) 2 , если в 300 г воды растворить 8,5 г вещества?

Задача 2. Вычислите массовую долю метанола СН 3 ОН в водном растворе, тем­пература замерзания которого равна минус 2,79 °С.

Задача 3. Определите температуру кипения раствора 1 г нафталина С 10 Н 8 в 20 г эфира, если температура кипения эфира равна 35,6 °С, К Э = 2,16 °С.

Задача 4. Раствор 1,05 г неэлектролита в 30 г воды замерзает при
– 0,7°С. Вычислите молекулярную массу неэлектролита.

Задача 5. Вычислите количество этиленгликоля С 2 Н 4 (ОН) 2 , которое необходимо прибавить на каждый килограмм воды для приготовления антифриза с точкой замерзания минус 15 °С.

Задача 7. Для приготовления антифриза на 30 л воды взято 9 л гли­церина С 3 Н 5 (ОН) 3 . Чему равна температура замерзания приготов­ленного антифриза? Плотность глицерина равна 1261 кг/м 3 .

Дисперсные системы

Химические вещества могут встречаться в чистом виде или в составе смесей. Смеси, в свою очередь, можно разделить на гомо- и гетерогенные. К гомогенным однофазным смесям относят истинные растворы (см. раздел 1), в которых растворенное вещество представлено в виде молекул или ионов, размеры которых соизмеримы с молекулами растворителя и не превышают 1 нм. Гомогенные смеси являются термодинамически устойчивыми.

При увеличении размеров частиц система становится гетерогенной, состоящей из двух или более фаз с сильно развитой поверхностью раздела. И, как показывает практика, иная область раздробленности вещества формирует новый комплекс свойств, присущих только этой форме организации вещества.

Хорошо известно, что растворы замерзают при более низкой температуре, чем чистый растворитель. Причиной понижения температуры замерзания (как и повышения температуры кипения) растворов является уменьшение давления пара, что можно проиллюстрировать с помощью диаграммы состояния воды (рис. 7.12).

Сплошные линии выражают границы фазовых полей для чистой воды. Напомним, что линия 1 отображает равновесие “жидкость - пар”. После добавления к воде нелетучего растворённого вещества давление пара над раствором (пунктирная линия 2 ) понижается при любой температуре.

Любая жидкость будет замерзать (отвердевать) тогда, когда давление пара над ней сравнивается с давлением пара над твёрдой фазой (в случае воды - надо льдом). Поэтому и температура замерзания раствора Т зам будет меньше, чем температура замерзания Т о зам чистого растворителя - воды.

Ф.М.Рауль (1883) опытным путём установил, что понижение температуры замерзания (иначе - депрессия замерзания )

DT зам = Т о зам - Т зам ,

вызываемое разными растворёнными веществами, взятыми в одинаковых молярных количествах, одинаково для данного растворителя.

При различных концентрациях растворённых веществ DT зам пропор­цио­нально их моляльной концентрации m :

DT зам = К кр m (7.1)

Коэффициент пропорциональности К кр в уравнении (7.1), называемый криоскопической константой , представляет собой молярное понижение температуры замерзания. Эта величина численно равна понижению температуры замерзания раствора, содержащего 1 моль растворённого вещества в 1 килограмме растворителя при условии, что раствор обладает свойствами идеального. Криоскопическая константа является характеристикой растворителя, её величина не зависит от природы растворённого вещества.

Моляльная концентрацияможет быть выражена через массы растворённого вещества (b) и растворителя (а) в граммах (см. п. 7.3):


где М - молярная масса растворённого вещества (г/моль). Подставляя это выражение в уравнение (7.1), получим


Из этого уравнения следует одно очень важное обстоятельство, а именно: зная точный состав разбавленного раствора и измеряя температуры замерзания чистого растворителя и раствора, можно рассчитать молярную массу растворённого вещества:


Уравнение (7.2) лежит в основе крио­ско­пи­ческого (или криометрического )метода определения молярной массы веществ по понижению температуры замерзания их растворов.Криометрический метод находит широкое применение в лабораторной практике, в том числе и в фармации.

Повышение температуры кипения растворов. Эбуллиоскопическая константа. Эбуллиоскоическое определение молярной массы веществ.

Повышение температуры кипения растворов. Эбулиометрия

Кипение растворов, как и чистых жидкостей, начинается при температуре, соответствующей достижению общего давления пара, равного атмосферному. Из рассмотрения диаграммы состояния воды (рис. 7.12), следует, что в случае раствора это достигается при более высокой температуре, чем в случае чистой воды. Как и понижение температуры замерзания (плавления), повышение температуры кипения растворов по сравнению с чистым растворителем

DТ кип = Т кип - Т о кип

пропорционально моляльной концентрации растворенного вещества:

DТ кип = К э m

где К э - эбулиоскопическая (эбулиометрическая )константа или молярное повышение температуры кипения. Она численно равна повышению температуры кипения раствора, содержащего 1 моль растворенного вещества в 1 килограмме растворителя при условии, что раствор обладает свойствами идеального. Эбулиоскопическая константа, как и криоскопическая, является характеристикой растворителя, и её величина не зависит от природы растворённого вещества.

Повышение температуры кипения раствора может быть использовано для расчёта молярной массы растворённого вещества эбулиометрическим (эбулио­скопическим )методом по уравнению (7.3), подобному тому, которое используется в крио­метрии. Обозначения в уравнении (7.3) аналогичны обозначениям, использованным в уравнении (7.2).


DT зам а

Осмос. Осмотическое давление растворов неэлектролитов. Уравнение Вант-Гоффа.

Осмос - явление самопроизвольного перехода растворителя через полупроницаемую мембрану, разделяющую два раствора или раствор и чистый растворитель. Причиной осмоса является различие химических потенциалов растворителя по обе стороны полупроницаемой мембраны и стремление системы к выравниванию его концентрации в растворах, находящихся по обе стороны полупроницаемой мембраны.

Высота поднятия жидкости во внутреннем сосуде осмометра не зависит от природы растворённого вещества, но зависит от его концентрации и от температуры, а именно: чем больше концентрация вещества и чем выше температура, тем выше поднимается уровень жидкости. Осмос продолжается не бесконечно, через какое-то время он останавливается. Если мембрана разделяет два раствора с различной, но не намного отличающейся концентрацией, осмос будет идти до практически полного выравнивания концентрации каждого из компонентов по обе стороны мембраны. Если же мембрана разделяет раствор и чистый растворитель или два раствора с сильно отличающимися концентрациями, осмос остановится из-за того, что ему будет препятствовать гидростатическое давление поднимающегося столба жидкости. При остановке осмоса в системе наступает динамическое равновесие, характеризующееся равенством скоростей диффузии растворителя через мембрану в обоих направлениях. Вообще осмос можно приостановить любым давлением, направленным противоположно ему. Очевидно, что давление, необходимое для остановки осмоса, равно по величине тому давлению, которое оказывают при диффузии через мембрану молекулы растворителя. Это избыточное гидростатическое давление, возникающее в результате осмоса, называется осмотическим давлением . Осмотическое давление обозначается буквой p ; размерность его в системе СИ - Па, но на практике часто используется и внесистемная единица атм.

Если два раствора обладают одинаковым осмотическим давлением, их называют изотоническими . Когда осмотические давления растворов различны, тот раствор, у которого осмотическое давление больше, называется гипер­тони­ческим , тот у которого оно меньше - гипотоническим .

В 1887 г. Я.Вант-Гофф вывел уравнение, связывающее осмотическое давление раствора неэлектролита с его концентрацией:

p = CRT (7.4)

где С - молярная концентрация растворённого вещества.

Электрохимия. Основные понятия. Значение электрохимии для медицины и фармации, биологии.

Электрохимия - раздел физической химии, изучающий физико-хими­че­ские свойства ионных систем (растворов, расплавов или твёрдых электролитов), а также явления, происходящие на поверхностях раздела фаз с участием заряженных частиц - ионов и электронов.

Электрод - это электрический проводник, имеющий электронную проводимость (проводник 1-го рода) и находящийся в контакте с ионным проводником - электролитом (ионной жидкостью, ионизированным газом, твёрдым электролитом).

Электро́дный потенциа́л - разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита.

Электри́ческая проводи́мость (электропроводность, проводимость) - способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению.

Электроли́т - вещество, которое проводит электрический ток вследствие диссоциации на ионы, что происходит в растворах и расплавах, или движения ионов в кристаллических решётках твёрдых электролитов.

Электро́лиз - физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор, либо расплав электролита.

Законы электрохимии лежат в основе многих широко распространённых методов исследования и анализа (потенциометрия, кондуктометрия, полярогра­фия, амперометрия и др.). В химической и фармацевтической промышленности при получении многих веществ используются электролиз и электросинтез (например, электросинтезом получается глюконовая кислота - сырьё для синтеза применяемого в медицинской практике глюконата кальция). Химические источники тока - гальванические элементы, аккумуляторы - настолько широко используются, что без них уже невозможно представить практически ни одной области деятельности человека.

В медицинской практике используются физиотерапевтические электрохимические методы, например, электрофорез, или приборы, в частности, электрокардиостимуляторы.

 

 

Это интересно: