→ Математические модели погрешности средства измерения. Математическая модель погрешностей совмещения

Математические модели погрешности средства измерения. Математическая модель погрешностей совмещения

В общем виде модель погрешности A 095 (i) может быть представлена в виде До9 5 (?) = До + F(t), где До - начальная погрешность СИ; F(t) - случайная для совокупности СИ данного типа функция времени, обусловленная физико-химическими процессами постепенного износа и старения элементов и блоков. Получить точное выражение для функции F(t) исходя из физических моделей процессов старения практически не представляется возможным. Поэтому, основываясь на данных экспериментальных исследований изменения погрешностей во времени, функцию F(t) аппроксимируют той или иной математической зависимостью.

Простейшей моделью изменения погрешности является линейная:

где v - скорость изменения погрешности. Как показали проведенные исследования , данная модель удовлетворительно описывает старение СИ в возрасте от одного до пяти лег. Использование ее в других диапазонах времени невозможно ввиду явного противоречия между определенными по этой формуле и экспериментальными значениями частоты отказов.

Метрологические отказы возникают периодически. Механизм их периодичности иллюстрирует рис. 4.2, а , где прямой линией 1 показано изменение 95%-ного квантиля при линейном законе.

При метрологическом отказе погрешность Д 095 (?) превышает значение Д пр = До + Д 3 , где Д, - значение запаса нормируемого предела погрешности, необходимого для обеспечения долговременной работоспособности СИ. При каждом таком отказе производится ремонт прибора, и его погрешность возвращается к исходному значению Д^ По прошествии времени Т? = t { - - t j _ l опять происходит отказ (моменты t u t 2 , t 3 и т.д.), после которого вновь производится ремонт. Следовательно, процесс изменения погрешности СИ описывается ломаной линией 2 на рис. 4.2, а, которая может быть представлена уравнением

где п - число отказов (или ремонтов) СИ. Если число отказов считать целым, то это уравнение описывает дискретные точки на прямой 1

(см. рис. 4.2, а). Если же условно принять, что п может принимать и дробные значения, то формула (4.2) будет описывать всю прямую 1 изменения погрешности Л 095 (() при отсутствии отказов.

Частота метрологических отказов увеличивается с ростом скорости V. Она столь же сильно зависит от запаса нормируемого значения погрешности Д 3 по отношению к фактическому значению погрешности средства измерений Д 0 на момент изготовления или окончания ремонта прибора. Практические возможности воздействия на скорость изменения V и запас погрешности Д, совершенно различны. Скорость старения определяется существующей технологией производства. Запас погрешности для первого межремонтного интервала определяется решениями, принятыми производителем СИ, а для всех последующих межремонтных интервалов - уровнем культуры ремонтной службы пользователя.

Если метрологическая служба предприятия обеспечивает при ремонте погрешность СИ, равную погрешности Д 0 на момент изготовления, то частота метрологических отказов будет малой. Если же при ремонте лишь обеспечивается выполнение условия До * (0,9-0,95) Д пр, то погрешность может выйти за пределы допустимых значений уже в ближайшие месяцы эксплуатации СИ и большую часть межповерочного интервала оно будет эксплуатироваться с погрешностью, превышающей его класс точности. Поэтому основным практическим средством достижения долговременной метрологической исправности средства измерений является обеспечение достаточно большого запаса Д 3 , нормируемого по отношению к пределу Д пр.

Постепенное непрерывное расходование этого запаса обеспечивает на некоторый определенный период времени метрологически исправное состояние СИ. Ведущие приборостроительные заводы обеспечивают Д 3 = (0,4-0,5) Д пр, что при средней скорости старения V = 0,05 Д пр /год позволяет получать межремонтный интервал Г р = А 3 /и = 8-10 лет и частоту отказов со = 1/Гр = 0,1-0,125 год -1 .

При изменении погрешности СИ в соответствии с формулой (4.1) все межремонтные интерваты Т будут равны между собой, а частота метрологических отказов со = 1 будет постоянной в течение всего срока эксплуатации.

4.3.1. Линейная модель изменения погрешности

В общем виде модель погрешности Л О95 (0 может быть представ­лена в виде A ogs (t) = А 0 + F{t), где Д 0 - начальная погрешность СИ; F(t) - случайная для совокупности СИ данного типа функция времени, обусловленная физико-химическими процессами посте­пенного износа и старения элементов и блоков. Получить точное выражение для функции F(t) исходя из физических моделей про­цессов старения практически не представляется возможным. Поэто­му, основываясь на данных экспериментальных исследований из­менения погрешностей во времени, функцию F(t) аппроксимиру­ют той или иной математической зависимостью.

Простейшей моделью изменения погрешности является ли­нейная;

\ И (Г) = Д 0 + vt, (4.1)

где v - скорость изменения погрешности. Как показали прове­денные исследования , данная модель удовлетворительно опи­сывает старение СИ в возрасте от одного до пяти лет. Использова­ние ее в других диапазонах времени невозможно ввиду явного противоречия между определенными по этой формуле и экспери­ментальными значениями частоты отказов.

Метрологические отказы возникают периодически. Механизм их периодичности иллюстрирует рис. 4.2,а, где прямой линией 1 показано изменение 95%-ного квантиля при линейном законе.


1
1
.......... А
// 1-2
В)

Рис. 4.2. Линейный (а) и экспоненциальный {б, в) законы изменения

погрешности


При метрологическом отказе погрешность Д 0 95 (0 превышает значение Д пр = Д 0 + Д з, где Д з - значение запаса нормируемого предела погрешности, необходимого для обеспечения долговре­менной работоспособности СИ. При каждом таком отказе произ­водится ремонт прибора, и его погрешность возвращается к ис­ходному значению Д 0 . По прошествии времени Т = А - t ; опять происходит отказ (моменты t v t 2 , t 3 и т.д.), после которого вновь производится ремонт. Следовательно, процесс изменения погреш­ности СИ описывается ломаной линией 2 на рис. 4.2, а, которая может быть представлена уравнением

д 095 (0 = Д 0 + п Д, (4.2)

где п - число отказов (или ремонтов) СИ. Если число отказов счи­тать целым числом, то это уравнение описывает дискретные точки на прямой 1 (рис. 4.2,а). Если условно принять, что я может прини­мать и дробные значения, то формула (4.2) будет описывать всю прямую 1 изменения погрешности Д 095 (0 при отсутствии отказов.



Частота метрологических отказов увеличивается с ростом ско­рости v. Она столь же сильно зависит от запаса нормируемого зна­чения погрешности Д з по отношению к фактическому значению погрешности средства измерений Д 0 на момент изготовления или окончания ремонта прибора. Практические возможности воздей­ствия на скорость изменения v и запас погрешности Д з совер­шенно различны. Скорость старения определяется существующей технологией производства. Запас погрешности для первого меж­ремонтного интервала определяется решениями, принятыми про­изводителем СИ, а для всех последующих межремонтных интер­валов - уровнем культуры ремонтной службы пользователя.

Если метрологическая служба предприятия обеспечивает при ремонте погрешность СИ, равную погрешности Д 0 на момент изготовления, то частота метрологических отказов будет малой. Если же при ремонте лишь обеспечивается выполнение усло­вия Д 0 = (0,9,...,0,95) Д пр, то погрешность может выйти за пре­делы допустимых значений уже в ближайшие месяцы эксплуа­тации СИ и большую часть межповерочного интервала оно бу­дет эксплуатироваться с погрешностью, превышающей его класс точности. Поэтому основным практическим средством достиже­ния долговременной метрологической исправности средства из­мерений является обеспечение достаточно большого запаса Д з, нор­мируемого по отношению к пределу Д пр.

Постепенное непрерывное расходование этого запаса обеспечи­вает на некоторый определенный период времени метрологически исправное состояние СИ. Ведущие приборостроительные заводы обеспе­чивают Д з = (0,4,...,0,5) Л пр, что при средней скорости старения v = 0,05 Л пр в год позволяет получать межремонтный интервал Т = Д/v = 8,...,10 лет и частоту отказов ю = 1/71 - 0,1,..., 0,125 год 1 .

При изменении погрешности СИ в соответствии с формулой (4.1) все межремонтные интервалы Т будут равны между собой, а частота метрологических отказов ю = \/Тбудет постоянной в тече­ние всего срока эксплуатации.

4.3.2. Экспоненциальная модель изменения погрешности

В реальности для одних приборов межремонтные интервалы умень­шаются, для других - увеличиваются. Это может быть объяснено тем, что погрешность СИ с течением времени экспоненциально возрастает или убывает. При ускоряющемся возрастании погрешно­сти (рис. 4.2,6) каждый последующий межремонтный интервал ко­роче предыдущего и частота метрологических отказов а>(0 с тече­нием времени возрастает. При замедленном возрастании погрешнос­ти (рис. 4.2,в) каждый последующий межремонтный интервал длиннее предыдущего и частота метрологических отказов со(0 с течением времени убывает вплоть до нуля.

Для рассмотренных случаев изменения погрешности во вре­мени описываются на основе экспоненциальной модели. В ней ча­стота метрологических отказов «

ш(0 = w 0 e"", (4.3)

где (о 0 - частота метрологических отказов на момент изготовле­ния средства измерений (т. е. при t = 0), год "; а - положительное или отрицательное ускорение процесса метрологического старе­ния, год 1 .

Число отказов n(t) определяется через частоту отказов а>(0 и при ее экспоненциальном изменении, согласно формуле (4.3), рас­считывается как

л(г) = /(o(T)rfr = \^e at dx = -1).

Тогда изменение во времени погрешности СИ с учетом форму­лы (4.2) имеет вид

Д 0 95 (0 = Д 0 + Я(0Д 3 = д 0 + (4.4)

Указанная зависимость показана кривыми 1 на рис. 4.2,6 и 4.2,в.

Раздел I. МЕТРОЛОГИЯ

Практическое использование формулы (4.4) требует знания че­тырех параметров: начального значения погрешности (Д 0), абсолют­ного запаса погрешности (Д 3), начальной частоты метрологических отказов (со 0) при t= 0 и ускорения (а) процесса старения. Уравне­ния для определения названных параметров, получаемые из уравне­ния (4.4), оказываются трансцендентными, что существенно зат­рудняет их применение.

С целью упрощения использования уравнения (4.4) необходи­мо разложить в ряд экспоненциальную функцию и взять три пер­вых члена этого разложения. В результате зависимость погрешнос­ти СИ от времени будет представлена в виде

А о,95^ = А 0 + A 3°V + Аз»о^/2 = \ + vt + af/2, (4.5)

где v - начальная скорость возрастания погрешности, %; а А - абсолютное значение ускорения изменения погрешности, %. В частном случае, когда а = 0, (4.5) превращается в линейное урав­нение вида (4.1).


Срок службы СИ - это календарное время, прошедшее с мо­мента его изготовления до конца эксплуатации. При положитель­ном ускорении процесса старения (см. рис. 4.2,6) частота отказов с увеличением срока службы возрастает и по истечении времени Г сл его приходится настолько часто ремонтировать, что эксплуа­тация становится экономически невыгодной, так как дешевле купить новый прибор. Экономическая целесообразность ремонта определяется отношением средней стоимости одного ремонта с р к стоимости с к нового средства измерений, названного в относи­тельной глубиной ремонта с = с р /с к. Срок службы СИ



Глава 4. Метрологическая надежность средств измерений

Решая полученное уравнение совместно с первым выражением из (4.6), можно рассчитать общее число отказов (ремонтов) СИ в течение срока эксплуатации.

Пример 4.1. Для электромеханических измерительных прибо­ров магнитоэлектрической системы класса точности 0,5 глубина ремонта составляет с = 0,3... 0,4; частота метрологических отказов на момент изготовления ш 0 = 0,11 год 1 , ускорение процесса старе­ния а ~ 0,19 год 1 . Определите срок службы таких приборов и общее число отказов.

Срок службы прибора рассчитывается по формуле (4.7):

Т сд = ]/ Дз-ОД 1-0,19 = 12,63 года.

Уравнение для расчета общего числа отказов имеет вид

п ъ = - [ехр(я/ д/а с ■ (0 0)-1],

Подставив в него числовые данные, получим

4 = ^19 1? хр (0 " 19 /^ 0 " 19 "°" 3 " 0,1 1)~*]= 0,579(е 5 " 8 -l)=5,8.

Данные расчета соответствуют экспериментальным данным, согласно которым средний срок службы рассматриваемых прибо­ров составляет 11-12 лет, в течение которых они имеют по 4-6 ремонтов.

При отрицательном ускорении процесса старения СИ межре­монтный период увеличивается. После некоторого числа ремонтов n L он становится бесконечным, метрологические отказы не возни­кают и СИ работает до тех пор, пока морально не устареет. В этом случае (а < 0) число метрологических отказов

% = = lim n(t) = lim^ (e al -1) = ^ . (->■» (->■» a a.

Погрешность СИ стремится к пределу, равному, согласно (4.4),

Д 0 95 (оо) = д 0 - -S- А 3 = ДО + „_ д. (4.8)

Экспоненциальная модель процесса старения позволяет описать изменения пофешности СИ при увеличении его возраста от года и практически до бесконечности. Однако данная модель имеет ряд не­достатков. Для СИ с отрицательным ускорением процесса старения она прогнозирует при t-> °° стремление пофешности к предельному
значению (4.8). В то же время для СИ с положительным ускорением модель прогнозирует неограниченное возрастание погрешности с течением времени, что противоречит практике.

Некоторые недостатки экспоненциальной модели старения уда­ется устранить при использовании так называемой логистической модели, а также полиномиальными и диффузионными марковс­кими моделями или моделями на основе процессов авторегрессии проинтегрированного скользящего среднего .

В технике используется большое число показателей надежнос­ти, которые приведены в стандарте ГОСТ 27.002-89. Основные из них находят применение и в теории метрологической надеж­ности. Знание показателей метрологической надежности позволя­ет потребителю оптимально использовать СИ, планировать мощ­ности ремонтных участков, размер резервного фонда приборов, обоснованно назначать межповерочные интервалы и проводить мероприятия по техническому обслуживанию и ремонту СИ.

Метрологические отказы при эксплуатации СИ составляют более 60% на третьем году эксплуатации и достигают 96% при работе более четырех лет.

В качестве показателей ремонтопригодности используются ве­роятность и среднее время восстановления работоспособности СИ. Вероятностью восстановления работоспособного состояния назы­вается вероятность того, что время восстановления работоспособ­ного состояния СИ не превысит заданное значение. Она представ­ляет собой значение функции распределения времени восстанов­ления при /= где - заданное время восстановления. Средним временем восстановления работоспособного состояния называется математическое ожидание времени восстановления, определяе­мое до его функции распределения.

В общем виде модель погрешности 0,95(t) может быть представлена в виде 0,95(t) = 0 + F(t), где D0 -- начальная погрешность СИ; F(t) -- случайная для совокупности СИ данного типа функция времени, обусловленная физико-химическими процессами постепенного износа и старения элементов и блоков. Получить точное выражение для функции F(t) исходя из физических моделей процессов старения практически не представляется возможным. Поэтому, основываясь на данных экспериментальных исследований изменения погрешностей во времени, функцию F(t) аппроксимируют той или иной математической зависимостью.

Простейшей моделью изменения погрешности является линейная:

где v скорость изменения погрешности. Как показали проведенные исследования, данная модель удовлетворительно описывает старение СИ в возрасте от одного до пяти лет. Использование ее в других диапазонах времени невозможно ввиду явного противоречия между определенными по этой формуле и экспериментальными значениями частоты отказов.

Метрологические отказы возникают периодически. Механизм их периодичности иллюстрирует рис.1, а, где прямой линией 1 показано изменение 95%-ного квантиля при линейном законе.


Рис. 2.

При метрологическом отказе погрешность D0,95(t) превышает значение Dпр=D0+nD3, где D3 -- значение запаса нормируемого предела погрешности, необходимого для обеспечения долговременной работоспособности СИ. При каждом таком отказе производится ремонт прибора и его погрешность возвращается к исходному значению D0. По прошествии времени Тр= ti - ti-1 опять происходит отказ (моменты tt, t2, t3 и т.д.), после которого вновь производится ремонт. Следовательно, процесс изменения погрешности СИ описывается ломаной линией 2 на рис.1, а, которая может быть представлена уравнением

где n -- число отказов (или ремонтов) СИ. Если число отказов считать целым, то это уравнение описывает дискретные точки на прямой 1 (рис.2, а). Если же условно принять, что п может принимать и дробные значения, то формула (2) будет описывать всю прямую 1 изменения погрешности D0,95(t) при отсутствии отказов.

Частота метрологических отказов увеличивается с ростом скорости v. Она столь же сильно зависит от запаса нормируемого значения погрешности D3 по отношению к фактическому значению погрешности средства измерений D0 на момент изготовления или окончания ремонта прибора. Практические возможности воздействия на скорость изменения v и запас погрешности D3 совершенно различны. Скорость старения определяется существующей технологией производства. Запас погрешности для первого межремонтного интервала определяется решениями, принятыми производителем СИ, а для всех последующих межремонтных интервалов -- уровнем культуры ремонтной службы пользователя.

Если метрологическая служба предприятия обеспечивает при ремонте погрешность СИ, равную погрешности D0 на момент изготовления, то частота метрологических отказов будет малой. Если же при ремонте лишь обеспечивается выполнение условия D0 (0,9... 0,95) Dпр, то погрешность может выйти за пределы допустимых значений уже в ближайшие месяцы эксплуатации СИ и большую часть межповерочного интервала оно будет эксплуатироваться с погрешностью, превышающей его класс точности. Поэтому основным практическим средством достижения долговременной метрологической исправности средства измерений является обеспечение достаточно большого запаса D3, нормируемого по отношению к пределу Dпр.

Постепенное непрерывное расходование этого запаса обеспечивает на некоторый определенный период времени метрологически исправное состояние СИ. Ведущие приборостроительные заводы обеспечивают D3 = (0,4...0,5) Dпр, что при средней скорости старения v = = 0,05АП /год позволяет получать межремонтный интервал Тр= D3 = 1/Т/v = 8... 10 лет и частоту отказов р= 0,1... 0,125 год-1.

При изменении погрешности СИ в соответствии с формулой (1) все межремонтные интервалы Тр = 1/Т будут равны между собой, а частота метрологических отказов р будет постоянной в течение всего срока эксплуатации. Однако проведенные экспериментальные исследования показали, что на практике это не выполняется.

Производственные погрешности можно рассматривать как случайные величины, описываемые вероятностными (теоретическими) и статистическими (экспериментальными) методами. Исчерпывающей характеристикой погрешности как случайной величины является закон распределения с конкретными значениями соответствующих параметров. Описанию распределений производственных погрешностей наиболее соответствует закон Гаусса с плотностью вероятности, рассчитываемой по формуле:

где т и σматематическое ожидание и среднеквадратическое отклонение.

Распределение Гаусса неоднократно подтверждалось экспериментальными данными в диапазоне значений, соответствующих размаху ±3σ. В соответствии с этим распределением, погрешность совмещения в конкретной точке εх в направлении Х воспринимается как случайная величина, распределенная по нормальному закону, со следующими характеристиками:

(3.16)

где rx коэффициент корреляции между величинами смещений соседних единичных участков в направлении X ; С2 x – число сочетаний из Х по 2, рассчитываемое из выражения

Из соотношений (3.15) и (3.16) выводится аналитическая запись плотности вероятности распределения величин:

Графики зависимости погрешностей совмещения от координат точек по одной оси, вытекающие из соотношения (3.18), показаны на рис. 3.59.

Рис. 3.59. Диаграмма погрешностей совмещения слоев в направлении Х

При наличии статистических данных могут быть найдены числовые характеристики распределения (3.18) для участка длиной L с шагом сетки h . Они находятся из соотношений:

(3.19)

где ML , σ L – соответственно математическое ожидание и дисперсия деформации участка длиной L ; – число сочетаний из L / h по 2.

Математические модели

Построенные выше физические модели крайне важно описать с помощью символов в виде математических формул и уравнений. Эти символы – параметры объектов (они же обозначают физические величины) – связаны между собой в виде выше сформулированных физических законов.

Совокупность формул и уравнений, устанавливающих связь между этими параметрами (физическими величинами) на базе законов физики и полученных в рамках выбранных физических моделœей, будем называть математической моделью объекта или процесса.

Следовательно, о физических величинах можно говорить как о параметрах, характеризующих и качественно, и количественно построенные физические модели.

Процесс создания математической модели можно также разделить на 3 этапа:

Этап 1. Составление формул и уравнений, описывающих состояние, движение и взаимодействия объектов в рамках выбранных физических моделœей.

Этап 2. Решение и исследование сугубо математических задач сформулированных на первом этапе. Основным вопросом здесь является решение так называемой прямой задачи, ᴛ.ᴇ. получение теоретических следствий и численных данных. На этом этапе важную роль играет математический аппарат и вычислительная техника (компьютер).

Этап 3. Выяснение того, согласуются ли результаты анализа и вычислений с результатами измерений в пределах точности последних. Отклонение результатов расчётов от результатов измерений свидетельствует:

Либо о неправильности применённых математических методов;

Либо о неверности принятой физической модели;

Либо о неверности процедуры измерений.

Выяснение источников ошибок требует большого искусства и высокой квалификации исследователя.

Бывает, что при построении математической модели некоторые её характеристики или связи между параметрами остаются неопределёнными вследствие ограниченности наших знаний о физических свойствах объекта. К примеру: иногда оказывается, что число уравнений, описывающих свойства объекта и связи между объектами, меньше числа параметров (физических величин), характеризующих объект. В этих случаях приходится вводить дополнительные уравнения, характеризующие объект и его свойства, иногда даже пытаются угадать эти свойства, для того, чтобы задача была решена, а результаты соответствовали результатам опытов в пределах заданной погрешности. Подобного образа задачи называются обратными.

Проблема достоверности наших представлений об окружающем мире, ᴛ.ᴇ. проблема соответствия модели объекта и реального объекта͵ является ключевой проблемой в теории познания. Сегодня общепринято, что критерием истинности наших знаний является опыт. Модель адекватна объекту, в случае если результаты теоретических исследований (расчёт) совпадают с результатами опыта (измерений) в пределах погрешности последнего.

Погрешности имеют место не только при измерениях, но и при теоретическом моделировании. Для теоретических моделœей, в соответствии с природой возникновения, будем различать:

Погрешности, возникающие при разработке физической модели;

Погрешности, возникающие при составлении математической модели;

Погрешности, возникающие при анализе математической модели;

Погрешности, связанные с конечным числом разрядов чисел при вычислениях.

В последнем случае, к примеру, число π в рамках символической записи как отношение длины окружности к диаметру представляет собой точное число, но попытка записать его в численном виде (π=3,14159265…) вызывает погрешность, связанную с конечным числом разрядов.

Перечисленные погрешности возникают всœегда. Избежать их невозможно, и их называются методическими . При измерениях методические погрешности проявляют себя как систематические.

Пример : погрешности физической и математической модели маятника, возникающие при измерении периода колебаний маятника в виде тела, подвешенного на нити.

Физическая модель маятника :

Нить – невесома и нерастяжима;

Тело – материальная точка;

Трение отсутствует;

Тело совершает плоское движение;

Гравитационное поле – однородное (ᴛ.ᴇ. g =const во всœех точках пространства, в которых находится тело);

Влияние других тел и полей на движение тела отсутствует.

Очевидно, что реальное тело не должна быть материальной точкой, оно имеет объём и форму, в процессе движения или со временем тело деформируется. Вместе с тем, нить имеет массу, она обладает упругостью и также деформируется. На движение маятника влияет движение точки подвеса, обусловленное действием вибраций, всœегда имеющих место. Также на движение маятника влияет сопротивление воздуха, трение в нити и способ ее крепления, внешние магнитное и электрическое поля, неоднородность гравитационного поля Земли и даже влияние гравитационного поля Луны, Солнца и окружающих тел.

Перечисленные факторы, в принципе, бывают учтены, однако сделать это достаточно трудно. Для этого потребуется привлечь почти всœе разделы физики. В конечном счете, учет этих факторов значительно усложнит физическую модель маятника и ее анализ. Не учет перечисленных, а также множества других, не упомянутых здесь факторов, существенно упрощает анализ, но приводит к погрешностям исследования.

Математическая модель маятника :

в рамках выбранной простейшей физической модели математическая модель маятника – дифференциальное уравнение движения маятника – имеет следующий вид:

, (1), где L – длина нити; φ – отклонение тела от положения равновесия.

При φ<<1 обычно считают, что sin φʼʼφ, и тогда уравнение движения записывается:.(2)

Это – линœейное дифференциальное уравнение, ĸᴏᴛᴏᴩᴏᴇ должна быть решено точно. Данноерешение имеет вид , где . Отсюда следует, что период колебаний маятника Т 0 =2p/w 0 не зависит от амплитуды φ 0 . При этом, это решение нельзя считать точным решением задачи о колебаниях маятника, представленного простейшей физической моделью, поскольку исходное уравнение (1) было другим.

Можно уточнить решение. В случае если разложить sin φ в ряд и учесть хотя бы первые два члена разложения, ᴛ.ᴇ. считать, что sinφʼʼφ+φ 3 /6, то решение дифференциального уравнения существенно усложнится. Приближенно его можно записать в виде , где . Отсюда следует, что в данном приближении период колебаний маятника Т =2p/w зависит от амплитуды колебаний по параболическому закону.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, погрешность математической модели (уравнение (2)), связанная с заменой sin φ на φ, приводит к погрешности результата расчета периода колебаний маятника. Оценка этой погрешности должна быть получена из решения задачи во втором приближении.

Проблема построения и анализа математической модели объекта исследования с заданной точностью, а также оценка погрешности расчётов в ряде случаев очень сложна. Требуется высокая математическая культура исследователя, необходим тщательный математический анализ и самой модели, и применяемых методов решения.

К примеру, не имеет смысла требование решения уравнения (1) с точностью, существенно превышающей точность построения физической модели. В частности, в предыдущем примере нет смысла делать замену sinφʼʼφ+φ 3 /6 вместо sinφʼʼφ, в случае если нить заметно деформируется или сопротивление воздуха велико.

Применение ЭВМ значительно увеличило возможности построения и исследования математических моделœей в технике, однако не следует думать, что совершенное знание математики, численных методов и языков программирования позволит решить любую физическую и прикладную задачу. Дело в том, что даже самые изящные и точные методы расчетов не могут исправить ошибки, допущенные при построении физической модели. Действительно, в случае если длина L не постоянна, или если размеры тела сопоставимы с длиной нити, или трение велико и колебания маятника быстро затухают, то даже абсолютно точное решение уравнения (1) не позволит получить точное решение задачи о колебаниях маятника.

Общая характеристика понятия “измерение” (сведения из метрологии)

В метрологии определœение понятия “измерение” даёт ГОСТ 16.263-70.

Измерение – научно обоснованный опыт для получения количественной информации с требуемой или возможной точностью о параметрах объекта измерения.

Измерение включает в себя следующие понятия:

Объект измерения;

Цель измерения;

Условия измерения (совокупность влияющих величин, описывающих состояние окружающей среды и объектов);

Метод измерения, ᴛ.ᴇ. совокупность приёмов использования принципов и средств измерений (принцип измерения – совокупность физических явлений, положенных в основу измерения);

Методика измерения, ᴛ.ᴇ. установленная совокупность операций и правил, выполнение которых обеспечивает получение необходимых результатов в соответствии с данным методом.

Средства измерения:

▪ измерительные преобразователи,

▪ измерительные приборы,

▪ измерительные установки,

▪ измерительные системы,

▪ измерительно-информационные системы;

Результаты измерений;

Погрешность измерений;

Понятия, характеризующие качество измерений:

достоверность (характеризуется доверительной вероятностью, ᴛ.ᴇ. вероятностью того, что истинное значение измеряемой величины находится в указанных пределах);

правильность (характеризуется значением систематической погрешности);

сходимость (близость друг к другу результатов измерений одной и той же величины, выполняемых повторно одними и теми же методами и средствами и в одних и тех же условиях; отражает влияние случайных погрешностей на результат);

воспроизводимость (близость друг к другу результатов измерений одной и той же величины, выполняемых в разных местах, разными методами и средствами, но приведенных к одним и тем же условиям).

Погрешности теоретических моделей - понятие и виды. Классификация и особенности категории "Погрешности теоретических моделей" 2017, 2018.

 

 

Это интересно: