→ Молниезащита зданий и сооружений учебно-методическое пособие. Громоотводы для деревьев Интенсивность грозовой деятельности

Молниезащита зданий и сооружений учебно-методическое пособие. Громоотводы для деревьев Интенсивность грозовой деятельности

Федеральное агентство по образованию

Государственное образовательное учреждение высшего

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра прикладной химии и физики

Молниезащита зданий и сооружений

Учебно-методическое пособие

Рассматривается методика и техника расчета молниезащиты гражданских и промышленных объектов.

Пособие предназначено для проведения практического занятия либо самостоятельного выполнения расчетно-графической работы (РГР) по дисциплине «Безопасность жизнедеятельности» студентами всех форм обучения. Может быть использовано в дипломном проектировании при решении аналогичных задач.

Составитель, доц., канд. техн. наук

Рецензент, доц., канд. техн. наук

© Уфимский государственный нефтяной технический университет, 2010

Согласно действующим нормативным документам выбор конструкции и расчет параметров молниезащиты должен производиться на основе данных о защищаемом объекте (назначения, наличия взрыво - и пожароопасных зон, огнестойкости и др.) и ожидаемом количестве поражений молнией в год. Последнее определяется исходя из сведений об интенсивности грозовой деятельности и геометрических размеров защищаемого объекта.

1 Характеристика интенсивности грозовой деятельности и молниепоражаемости объекта

Интенсивность грозовой деятельности характеризуется средним числом грозовых часов (Пч) в году, определяемым по карте (рисунок 1).

Расчет ожидаемого количества N поражений молнией в год незащищенного объекта производится по формулам:

Для сосредоточенных зданий и сооружений (дымовые трубы, вышки, башни)

N = 9πh2n · 10-6;

Для зданий и сооружений прямоугольной формы

N = [(S+6h)(L+6h) – 7,7h2]n · 10-6,

где h – наибольшая высота здания или сооружения, м;

S, L – соответственно, ширина и длина здания или сооружения;

n – среднегодовое число ударов молнии в 1 км2 земной поверхности, определяемое по таблице 1.

Если здание имеет сложную конфигурацию, то при расчете за S и L принимают ширину и длину прямоугольника, в который вписывается план здания.

Таблица 1 – Зависимость среднегодового числа ударов молнии в 1 км2 земной поверхности от интенсивности грозовой деятельности

Интенсивность грозовой деятельности Пч, ч

Среднее число ударов молнии в год на 1 км2, n

Рисунок 1 – Карта среднегодовой продолжительности гроз в часах

2 Классификация зданий и сооружений

по устройству молниезащиты

Инструкция по проектированию и устройству молниезащиты , исходя из вероятности поражения защищаемого объекта молнией, масштаба возможных разрушений и ущерба, устанавливает три категории зданий и сооружений (I, II, III) и два типа (А и Б) зон защиты объектов от прямых ударов молнии. Зона защиты типа А обеспечивает перехват на пути к защищаемому объекту не менее 99,5% молний, а типа Б – не менее 95%.

К I категории относят здания и сооружения (или их части), в которых имеются взрывоопасные зоны классов В-I и В-II согласно Правилам устройства электроустановок (ПУЭ). В них хранятся или содержатся постоянно либо появляются во время производственного процесса смеси газов, паров или пыли горючих веществ с воздухом или иными окислителями, способные взорваться от электрической искры.

Ко II категории относят здания и сооружения (или их части), в которых имеются взрывоопасные зоны классов В-Iа, В-Iб, В-IIа согласно ПУЭ. В таких сооружениях опасные смеси появляются лишь при аварии или неисправностях в технологическом процессе. К этой же категории принадлежат наружные технологические установки и открытые склады, содержащие взрывоопасные газы и пары, горючие и легковоспламеняющиеся жидкости (газгольдеры, цистерны и резервуары, сливо-наливные эстакады и т. п.), относимые по ПУЭ к взрывоопасным зонам класса В-Iг.

1) здания и сооружения с пожароопасными зонами классов П-I, П-II, П-IIа согласно ПУЭ;

2) открытые склады твердых горючих веществ и наружные технологические установки, в которых применяют или хранят горючие жидкости с температурой вспышки паров выше 61ºС, относимые по ПУЭ к классу П-III;

3) здания и сооружения III, IV и V степени огнестойкости, в которых отсутствуют производства с зонами, относимыми по ПУЭ к классам пожаро - и взрывоопасным;

4) жилые и общественные здания , возвышающиеся на 25 м и более над средней высотой окружающих зданий в радиусе 400 м, а также отдельно стоящие здания высотой более 30 м, удаленные от других зданий на 400 м и более;

5) общественные здания III, IV и V степени огнестойкости следующего назначения: детские сады и ясли, школы и школы-интернаты, спальные корпуса и столовые санаториев, домов отдыха, лечебные корпуса больниц, клубы, кинотеатры;

6) здания и сооружения, являющиеся памятниками истории и куль - туры;

7) дымовые трубы предприятий и котельных, водонапорные и силосные башни, вышки различного назначения высотой более 15 м.

3 Выбор типа защиты

Различают два рода воздействия молнии: первичное, связанное с прямым ударом, и вторичное, вызванное электромагнитной и электростатической индукцией и заносом высоких потенциалов через металлические коммуникации в сооружения при разряде облака. В результате этих явлений могут возникать пожары, взрывы, разрушения конструкций, поражения людей, перенапряжение на проводах электрической сети.

Для защиты от прямых ударов молнии сооружаются молниеотводы, принимающие на себя ток молнии и отводящие его в землю. Зона защиты молниеотвода – это часть пространства, примыкающая к молниеотводу, внутри которого здание или сооружение защищено от прямых ударов молнии с определенной степенью надежности. Защитное действие молниеотвода основано на свойстве молнии поражать наиболее высокие и хорошо заземленные металлические сооружения. При этом, по мере углубления внутрь этого пространства степень надежности защиты возрастает.

Защита от электростатической индукции заключается в отводе индуцируемых статических зарядов в землю путем присоединения металлического оборудования, расположенного внутри и вне зданий, к специальному заземлителю или к защитному заземлению электроустановок; сопротивление заземлителя растеканию тока промышленной частоты должно быть не более 10 Ом.

Для защиты от электромагнитной индукции между трубопроводами и другими протяженными металлокоммуникациями в местах их сближения на расстояние 10 см и менее через каждые 20 м устанавливают (приваривают) металлические перемычки, по которым наведенные токи перетекают из одного контура в другой без образования электрических разрядов между ними.

Защита от заноса высоких потенциалов внутрь зданий обеспечивается отводом потенциалов в землю вне зданий путем присоединения металлокоммуникаций на входе в здания к заземлителям защиты от электростатической индукции или к защитным заземлениям электроустановок.

Здания и сооружения I категории должны быть обязательно защищены от прямых ударов молнии, от электрической и электромагнитной индукции, от заноса высокого потенциала через подземные и наземные коммуникации. Молниеотводы предусматриваются с зонами защиты типа А.

Здания и сооружения II категории должны быть защищены от прямых ударов молнии; вторичных ее воздействий и заноса высоких потенциалов по коммуникациям только в местностях со средней интенсивностью грозовой деятельности nч ≥10. Тип зоны защиты молниеотводов зависит от показателя N: тип А берется при N>1, тип Б – при N≤1.

Здания и сооружения III категории подлежат молниезащите в местностях с грозовой деятельностью 20 ч и более в год, зона защиты молниеотводов – типа Б, за исключением объектов, указанных в п. 1 и 3. В них выбор типа зоны зависит от ожидаемого числа поражений молнией: при 0,12 принимается тип А.

Все здания и сооружения III категории защищают от прямых ударов молнии и заноса высоких потенциалов через наземные металлические коммуникации. Наружные установки защищают только от прямых ударов молнии.

4 Конструкции молниеотводов

Молниеотвод состоит из молниеприемника, непосредственно воспринимающего удар молнии, токоотвода (спуска), соединяющего молниеприемник с заземлителем, заземлителя, через который ток молнии стекает в землю. Вертикальную конструкцию (столб или мачту) или часть сооружения, предназначенную для закрепления молниеприемника и токоотвода, называют опорой молниеотвода.

По типу молниеприемников молниеотводы делят на стержневые, тросовые и сеточные, укладываемые на защищаемое здание; по числу и общей зоне защиты – на одиночные, двойные и многократные. Кроме того, различают молниеотводы отдельно стоящие, изолированные и не изолированные от защищаемого здания.

Стержневые молниеотводы представляют собой вертикальные стержни или мачты, тросовые – горизонтальные стальные канаты и провода, закрепленные на двух и более опорах, по каждой из которых прокладывают токоотвод к отдельному заземлителю. У сеточных молниеотводов молниеприемником служит металлическая сетка, присоединяемая токоотводом к заземлителю. Чаще используют стержневые молниеотводы.

Для повышения безопасности людей и животных заземлители размещают в редко посещаемых местах (на газонах, в кустарниках) в удалении на 5 м и более от основных грунтовых проезжих и пешеходных дорог, располагают их под асфальтовыми покрытиями или устанавливают предупреждающие плакаты. Токоотводы размещают в недоступных местах.

5 Расчет и проектирование молниеотводов

При устройстве молниезащиты соблюдают следующие условия: соответствие типа молниезащиты характеру производственного процесса в здании или сооружении, возможность типизации конструктивных элементов молниезащиты, надежность действия всех элементов молниезащиты и их «равнопрочность», большой срок службы (10 лет и более), возможность применения недорогостоящих материалов и использование конструктивных элементов здания и сооружения, наглядность монтажа, предупредительные и воспрещающие знаки или ограждения, доступ ко всем элементам при контроле, восстановлении или ремонте.

Кроме того, при устройстве молниезащиты зданий и сооружений любой категории учитывают возможность экранирования их зонами защиты молниеотводов других близко расположенных зданий и сооружений. При этом максимально используют естественные молниеотводы (вытяжные трубы, водонапорные башни, дымовые трубы, линии электропередачи и другие возвышающиеся сооружения).

Ниже приведены методики расчета молниеотводов разных конструкций высотой до 150 м.

Одиночный стержневой молниеотвод . Зона его защиты представляет собой конус (рисунок 2), вершина которого находится на высоте h0

Для зоны типа А

h0 = 0,85h; R0 = (1,1 - 0,002h)h;

Rx = (1,1 - 0,002h)(h - hx/0,85);

Для зоны типа Б

h0 = 0,92h; R0 = 1,5h; Rx = 1,5(h - hx/0,92),

где Rx и hx определяют по закону подобия треугольников.

Для зоны типа Б высоту молниеотвода при известных величинах hx и Rx устанавливают по формуле:

h = (Rx + 1,63hx)/1,5.

Рисунок 2 – Зона защиты одиночного стержневого молниеотвода

1 – граница зоны защиты на уровне hx; 2 – то же на уровне земли

Двойной стержневой молниеотвод (рисунок 3). Торцевые части зоны защиты определяют как зоны одиночных стержневых молниеотводов. Значение h0, R0, Rx1 и Rx2 расчитывают по выше приведенным формулам для обоих типов зон защиты.

Внутренние области зон защиты имеют следующие габаритные размеры:

Зона типа А:

при L ≤ h hc = h0; Rc = R0; Rcx = Rx;

при h < L ≤ 2h hc = h0-(0,17 + 3×10-4h)(L - h);

при 2h < L ≤ 4h ;

;

;

Зона типа Б:

при L ≤ h hc = h0; Rcx = Rx; Rc = R0;

при h < L ≤ 6h, hc = h0 - 0,14(L - h);

Rc = R0; Rcx = R0(hc - hx)/ hc;

При больших расстояниях молниеотводы следует рассматривать как одиночные.

При известных hc, L и Rcx = 0 высоту молниеотвода для зоны типа Б определяют по формуле:

h = (hc + 0,14L)/1,06.


Рисунок 3 – Зона защиты двойного стержневого молниеотвода

1 – граница зоны защиты на уровне hx 1 ; 2 – то же на уровне hx 2 ,

3 – то же на уровне земли

Двойной стержневой молниеотвод разной высоты (рисунок 4). Торцевые части также представляют собой зоны защиты одиночных стержневых молниеотводов соответствующей высоты, а h01, h02, R01, R02, Rx1, Rx2 определяют как для одиночного молниеотвода обоих типов зон.

Rcx = R0(hc - hx)/hc;

Rc= (R01 + R02)/2;

hc = (hc1 + hc2)/2,

где hc1 и hc2 для обоих типов зон защиты вычисляют по формулам для двойного стержневого молниеотвода.

Рисунок 4 – Зона защиты одиночного стержневого молниеотвода

Для разновысокого двойного стерженового молниеотвода зона защиты типа А существует при L ≤ 4hmin, типа Б – при L ≤ 6hmin.

Одиночный тросовый молниеотвод . Зона его защиты приведена на рисунке 5, где h – расстояние по высоте до троса в точке наибольшего провеса.

С учетом стрелы провеса при известной высоте опор hоп и длине пролета а < 120 м высота до троса h = hоп - 2 м, а при а=120...150 h = hоп - 3 м.

Зоны защиты одиночных тросовых молниеотводов имеют следующие размеры.

Для зоны типа А:

h0 = 0,85h; R0 = (1,35 - 0,0025h)h;

Rx = (1,35 - 0,0025h)(h - hx/0,85).

Для типа Б:

h0 = 0,92h; R0 = 1,7h ; Rх = 1,7(h - hx/0,92).

Для зоны типа Б высота одиночного тросового молниеотвода при известных hx и Rx равна h = (Rx + 1,85hx)/1,7.

Рисунок 5 – Зона защиты одиночного тросового молниеотвода

1 – граница зоны защиты на уровне земли;

2 – граница зоны защиты на уровне hx

6 Пример расчета

Здание расположено в Республике Башкортостан , имеет размеры:

L = 27 м; S = 18 м; h = 6 м.

Расчеты ведем в следующем порядке.

1. Определяем по классификации ПУЭ класс взрывопожароопасной зоны для склада ЛКМ. ЛКМ обычно изготовляются на основе легковоспламеняющихся жидкостей и склад является взрывоопасной зоной. Однако ЛКМ поступают и хранятся на складе в герметичной таре. Образование взрывоопасных смесей в здании склада возможно в случае неисправной тары. Следовательно, склад ЛКМ по классификации ПУЭ относится к классу В-1а.

2. Определяем требуемую категорию устройства защиты склада ЛКМ от воздействия атмосферного электричества. Согласно п.2 здания и сооружения, в которых имеются взрывоопасные зоны класса В-1а, относятся ко II категории защиты и должны быть защищены от всех четырех опасных факторов атмосферного электричества.

3. Определяем требуемый тип защиты для склада ЛКМ.

По карте среднегодовой продолжительности гроз (рисунок 1) находим, что интенсивность грозовой деятельности на территории РБ составляет 40…60 ч в год. Согласно таблице 1 такой интенсивности соответствует среднегодовое число ударов молнии, приходящееся на 1 км2 площади, равное n = 4. Ожидаемое число поражений склада ЛКМ молнией в течение года при отсутствии молниеотвода определяется по формуле:

Подставляя известные данные, получаем:

Так как N<1, то принимаем зону защиты типа Б.

4. Выписываем геометрические размеры зоны защиты типа Б:

; rо = 1,5 h м ; rх = 1,5(h м - hх/0,92),

где hо – высота конуса зоны защиты; hм – высота стержневого молниеотвода; rх – радиус зоны защиты на уровне земли; rо – радиус зоны защиты на высоте защищаемого объекта; hх – высота защищаемого объекта.

5. Определяем радиус rо зоны защиты на высоте объекта, используя графический метод. Наносим в выбранном масштабе на лист бумаги план склада ЛКМ (вид сверху). Выбираем и наносим на схему точку установки молниеотвода (для объектов II категории расстояние между молниеотводом и защищаемым объектом не нормируется). Считая эту точку центром, описываем окружность такого радиуса, чтобы защищаемый объект (склад ЛКМ) вписался в нее. Снимаем со схемы значение радиуса rх; r = 27,5 м.

Рисунок 6 – К расчету высоты отдельно стоящего стержневого молниеотвода

1 – защищаемый объект; 2 – место установки молниеотвода

6. Определяем высоту молниеотвода:

h м = (r х + 1,63hх)/1,5; hм = 25 м

7. Определяем другие размеры зоны защиты:

ho = 22,8 м; rх = 37,3 м

8. Строим на схеме зону защиты (вид сбоку) и проверяем графически вписываемость объекта здания склада в зону защиты по высоте.

Библиографический список

    Пожаловаться

Раздел 2. Канализация электроэнергии

Глава 2.5. Воздушные линии электропередачи напряжением выше 1 кВ

Климатические условия и нагрузки

2.5.38. При расчете ВЛ и их элементов должны учитываться климатические условия ветровое давление, толщина стенки гололеда, температура воздуха, степень агрессивного воздействия окружающей среды, интенсивность грозовой деятельности, пляска проводов и тросов, вибрация.

Определение расчетных условий по ветру и гололеду должно производиться на основании соответствующих карт климатического районирования территории РФ (рис.2.5.1, 2.5.2 – см. цветную вклейку) с уточнением при необходимости их параметров в сторону увеличения или уменьшения по региональным картам и материалам многолетних наблюдений гидрометеорологических станций и метеопостов за скоростью ветра, массой, размерами и видом гололедно-изморозевых отложений. В малоизученных районах* для этой цели могут организовываться специальные обследования и наблюдения.

* К малоизученным районам относятся горная местность и районы, где на 100 км трассы ВЛ для характеристики климатических условий имеется только одна репрезентативная метеорологическая станция.

Рис.2.5.1. Карта районирования территории РФ по ветровому давлению.

Рис.2.5.2. Карта районирования территории РФ по тощине стенки гололеда.

При отсутствии региональных карт значения климатических параметров уточняются путем обработки соответствующих данных многолетних наблюдений согласно методическим указаниям (МУ) по расчету климатических нагрузок на ВЛ и построению региональных карт с повторяемостью 1 раз в 25 лет.

Основой для районирования по ветровому давлению служат значения максимальных скоростей ветра с 10-минутным интервалом осреднения скоростей на высоте 10 м с повторяемостью 1 раз в 25 лет. Районирование по гололеду производится по максимальной толщине стенки отложения гололеда цилиндрической формы при плотности 0,9 г/см 3 на проводе диаметром 10 мм, расположенном на высоте 10 м над поверхностью земли, повторяемостью 1 раз в 25 лет.

Температура воздуха определяется на основании данных метеорологических станций с учетом положений строительных норм и правил и указаний настоящих Правил.

Интенсивность грозовой деятельности должна определяться по картам районирования территории РФ по числу грозовых часов в году (рис.2.5.3 – см. цветную вклейку), региональным картам с уточнением при необходимости по данным метеостанций о среднегодовой продолжительности гроз.

Рис.2.5.3. Карта районирования территории РФ по среднегодовой продолжительности гроз в часах.

Степень агрессивного воздействия окружающей среды определяется с учетом положений СНиПов и государственных стандартов, содержащих требования к применению элементов ВЛ, гл.1.9 и указаний настоящей главы.

Определение районов по частоте повторяемости и интенсивности пляски проводов и тросов должно производиться по карте районирования территории РФ (рис.2.5.4 – см. цветную вклейку) с уточнением по данным эксплуатации.

Рис.2.5.4. Карта районирования территории РФ по пляске проводов.

По частоте повторяемости и интенсивности пляски проводов и тросов территория РФ делится на районы с умеренной пляской проводов (частота повторяемости пляски 1 раз в 5 лет и менее) и с частой и интенсивной пляской проводов (частота повторяемости более 1 раза в 5 лет).

2.5.39. При определении климатических условий должно быть учтено влияние на интенсивность гололедообразования и на скорость ветра особенностей микрорельефа местности (небольшие холмы и котловины, высокие насыпи, овраги, балки и т.п.), а в горных районах – особенностей микро- и мезорельефа местности (гребни, склоны, платообразные участки, днища долин, межгорные долины и т.п.).

2.5.40. Значения максимальных ветровых давлений и толщин стенок гололеда для ВЛ определяются на высоте 10 м над поверхностью земли с повторяемостью 1 раз в 25 лет (нормативные значения).

2.5.41. Нормативное ветровое давление W 0 , соответствующее 10-минутному интервалу осреднения скорости ветра (V 0), на высоте 10 м над поверхностью земли принимается по табл.2.5.1 в соответствии с картой районирования территории России по ветровому давлению (рис.2.5.1) или по региональным картам районирования.

Таблица 2.5.1. Нормативное ветровое давление W 0 на высоте 10 м над поверхностью земли.

Полученное при обработке метеоданных нормативное ветровое давление следует округлять до ближайшего большего значения, приведенного в табл.2.5.1.

Ветровое давление W определяется по формуле, Па

Ветровое давление более 1500 Па должно округляться до ближайшего большего значения, кратного 250 Па.

Для ВЛ 110-750 кВ нормативное ветровое давление должно приниматься не менее 500 Па.

Для ВЛ, сооружаемых в труднодоступных местностях, ветровое давление рекомендуется принимать соответствующим району на один выше, чем принято для данного региона по региональным картам районирования или на основании обработки материалов многолетних наблюдений.

2.5.42. Для участков ВЛ, сооружаемых в условиях, способствующих резкому увеличению скоростей ветра (высокий берег большой реки, резко выделяющаяся над окружающей местностью возвышенность, гребневые зоны хребтов, межгорные долины, открытые для сильных ветров, прибрежная полоса морей и океанов, больших озер и водохранилищ в пределах 3-5 км), при отсутствии данных наблюдений нормативное ветровое давление следует увеличивать на 40% по сравнению с принятым для данного района. Полученные значения следует округлять до ближайшего значения, указанного в табл.2.5.1.

2.5.43. Нормативное ветровое давление при гололеде W г с повторяемостью 1 раз в 25 лет определяется по формуле 2.5.41, по скорости ветра при гололеде v г.

Скорость ветра v г принимается по региональному районированию ветровых нагрузок при гололеде или определяется по данным наблюдений согласно методическим указаниям по расчету климатических нагрузок. При отсутствии региональных карт и данных наблюдений . Для ВЛ до 20 кВ нормативное ветровое давление при гололеде должно приниматься не менее 200 Па, для ВЛ 330-750 кВ – не менее 160 Па.

Нормативные ветровые давления (скорости ветра) при гололеде округляются до ближайших следующих значений, Па (м/с): 80 (11), 120 (14), 160 (16), 200 (18), 240 (20), 280 (21), 320 (23), 360 (24).

Значения более 360 Па должны округляться до ближайшего значения, кратного 40 Па.

2.5.44. Ветровое давление на провода ВЛ определяется по высоте расположения приведенного центра тяжести всех проводов, на тросы – по высоте расположения центра тяжести тросов, на конструкции опор ВЛ – по высоте расположения средних точек зон, отсчитываемых от отметки поверхности земли в месте установки опоры. Высота каждой зоны должна быть не более 10 м.

Для различных высот расположения центра тяжести проводов, тросов, а также средних точек зон конструкции опор ВЛ ветровое давление определяется умножением его значения на коэффициент K w , принимаемый по табл.2.5.2.

Таблица 2.5.2. Изменение коэффициента K w по высоте в зависимости от типа местности .

Высота расположения приведенного центра тяжести проводов, тросов и средних точек зон конструкций опор ВЛ над поверхностью земли, м

Коэффициент K w для типов местности

Примечание. Типы местности соответствуют определениям, приведенным в 2.5.6.

Полученные значения ветрового давления должны быть округлены до целого числа. Для промежуточных высот значения коэффициентов K w определяются линейной интерполяцией.

Высота расположения приведенного центра тяжести проводов или тросов h пр для габаритного пролета определяется по формуле, м

,

где h cр – среднеарифметическое значение высоты крепления проводов к изоляторам или среднеарифметическое значение высоты крепления тросов к опоре, отсчитываемое от отметок земли в местах установки опор, м;

f – стрела провеса провода или троса в середине пролета при высшей температуре, м.

2.5.45. При расчете проводов и тросов ветер следует принимать направленным под углом 90° к оси ВЛ.

При расчете опор ветер следует принимать направленным под углом 0°, 45° и 90°к оси ВЛ, при этом для угловых опор за ось ВЛ принимается направление биссектрисы внешнего угла поворота, образованного смежными участками линии.

2.5.46. Нормативную толщину стенки гололеда b э плотностью 0,9 г/см 3 следует принимать по табл.2.5.3 в соответствии с картой районирования территории России по толщине стенки гололеда (см. рис.2.5.2) или по региональным картам районирования.

Таблица 2.5.3. Нормативная толщина стенки гололеда b э для высоты 10 м над поверхностью земли.

Полученные при обработке метеоданных нормативные толщины стенок гололеда рекомендуется округлять до ближайшего большего значения, приведенного в табл.2.5.3.

В особых районах по гололеду следует принимать толщину стенки гололеда, полученную при обработке метеоданных, округленную до 1 мм.

Для ВЛ 330-750 кВ нормативная толщина стенки гололеда должна приниматься не менее 15 мм.

Для ВЛ, сооружаемых в труднодоступных местностях, толщину стенки гололеда рекомендуется принимать соответствующей району на один выше, чем принято для данного региона по региональным картам районирования или на основании обработки метеоданных.

2.5.47. При отсутствии данных наблюдений для участков ВЛ, проходящих по плотинам и дамбам гидротехнических сооружений, вблизи прудов-охладителей, башенных градирен, брызгальных бассейнов в районах с низшей температурой выше минус 45 °C , I нормативную толщину стенки гололеда b э следует принимать на 5 мм больше, чем для прилегающих участков ВЛ, а для районов с низшей температурой минус 45° и ниже – на 10 мм.

2.5.48. Нормативная ветровая нагрузка при гололеде на провод (трос) определяется по 2.5.52 с учетом условной толщины стенки гололеда b у, которая принимается по региональному районированию ветровых нагрузок при гололеде или рассчитывается согласно методическим указаниям по расчету климатических нагрузок. При отсутствии региональных карт и данных наблюдений b у =b э.

2.5.49. Толщина стенки гололеда (b э, b у) на проводах ВЛ определяется на высоте расположения приведенного центра тяжести всех проводов, на тросах – на высоте расположения центра тяжести тросов. Высота приведенного центра тяжести проводов и тросов определяется в соответствии с 2.5.44.

Толщина стенки гололеда на проводах (тросах) при высоте расположения приведенного их центра тяжести более 25 м определяется умножением ее значения на коэффициенты K i и K d , принимаемые по табл.2.5.4. При этом исходную толщину стенки гололеда (для высоты 10 м и диаметра 10 мм) следует принимать без увеличения, предусмотренного 2.5.47. Полученные значения толщины стенки гололеда округляются до 1 мм.

Таблица 2.5.4. Коэффициенты K i и K d , учитывающие изменение толщины стенки гололеда.

Примечание. Для промежуточных высот и диаметров значения коэффициентов K i и K d определяются линейной интерполяцией.

При высоте расположения приведенного центра тяжести проводов или тросов до 25 м поправки на толщину стенки гололеда на проводах и тросах в зависимости от высоты и диаметра проводов и тросов не вводятся.

2.5.50. Для участков ВЛ, сооружаемых в горных районах по орографически защищенным извилистым и узким склоновым долинам и ущельям, независимо от высот местности над уровнем моря, нормативную толщину стенки гололеда b э рекомендуется принимать не более 15 мм. При этом не следует учитывать коэффициент K i .

2.5.51. Температуры воздуха – среднегодовая, низшая, которая принимается за абсолютно минимальную, высшая, которая принимается за абсолютно максимальную, – определяются по строительным нормам и правилам и по данным наблюдений с округлением до значений, кратных пяти.

Температуру воздуха при нормативном ветровом давлении W 0 следует принимать равной минус 5 °C, за исключением районов со среднегодовой температурой минус 5 °C и ниже, для которых ее следует принимать равной минус 10 °C.

Температуру воздуха при гололеде для территории с высотными отметками местности до 1000 м над уровнем моря следует принимать равной минус 5 °C, при этом для районов со среднегодовой температурой минус 5°C и ниже температуру воздуха при гололеде следует принимать равной минус 10 °C. Для горных районов с высотными отметками выше 1000 м и до 2000 м температуру следует принимать равной минус 10 °C, более 2000 м – минус 15 °C. В районах, где при гололеде наблюдается температура ниже минус 15 °C, ее следует принимать по фактическим данным.

w н, действующая перпендикулярно проводу (тросу), для каждого рассчитываемого условия определяется по формуле

где α w – коэффициент, учитывающий неравномерность ветрового давления по пролету ВЛ, принимаемый равным:

Промежуточные значения α w определяются линейной интерполяцией;

K l – коэффициент, учитывающий влияние длины пролета на ветровую нагрузку, равный 1,2 при длине пролета до 50 м, 1,1 – при 100 м, 1,05 – при 150 м, 1,0 – при 250 м и более (промежуточные значения K l определяются интерполяцией);

K w – коэффициент, учитывающий изменение ветрового давления по высоте в зависимости от типа местности, определяемый по табл.2.5.2;

C x – коэффициент лобового сопротивления, принимаемый равным: 1,1 – для проводов и тросов, свободных от гололеда, диаметром 20 мм и более; 1,2 – для всех проводов и тросов, покрытых гололедом, и для всех проводов и тросов, свободных от гололеда, диаметром менее 20 мм;

W – нормативное ветровое давление, Па, в рассматриваемом режиме:

W=W 0 – определяется по табл.2.5.1 в зависимости от ветрового района;

W=W г – определяется по 2.5.43;

F – площадь продольного диаметрального сечения провода, м 2 (при гололеде с учетом условной толщины стенки гололеда b у);

φ – угол между направлением ветра и осью ВЛ.

Площадь продольного диаметрального сечения провода (троса) F определяется по формуле, м 2

,

где d – диаметр провода, мм;

K i и K d – коэффициенты, учитывающие изменение толщины стенки гололеда по высоте и в зависимости от диаметра провода и определяемые по табл.2.5.4;

b у – условная толщина стенки гололеда, мм, принимается согласно 2.5.48;

l – длина ветрового пролета, м.

2.5.53. Нормативная линейная гололедная нагрузка на 1 м провода и трос P г н определяется по формуле, Н/м

где K i и K d – коэффициенты, учитывающие изменение толщины стенки гололеда по высоте и в зависимости от диаметра провода и принимаемые по табл.2.5.4;

b э – толщина стенки гололеда, мм, по 2.5.46;

d – диаметр провода, мм;

ρ – плотность льда, принимаемая равной 0,9 г/см 3 ;

g – ускорение свободного падения, принимаемое равным 9,8 м/с 2 .

w н при механическом расчете проводов и тросов по методу допускаемых напряжений определяется по формуле, Н

,

где P w н – нормативная ветровая нагрузка по 2.5.52;

Υ nw – коэффициент надежности по ответственности, принимаемый равным: 1,0 - для ВЛ до 220 кВ; 1,1 - для ВЛ 330-750 кВ и ВЛ, сооружаемых на двухцепных и многоцепных опорах независимо от напряжения, а также для отдельных особо ответственных одноцепных ВЛ до 220 кВ при наличии обоснования;

Υ p – региональный коэффициент, принимаемый от 1 до 1,3. Значение коэффициента принимается на основании опыта эксплуатации и указывается в задании на проектирование ВЛ;

Υ f – коэффициент надежности по ветровой нагрузке, равный 1,1.

2.5.55. Расчетная линейная гололедная нагрузка на 1 м провода (троса) P г.п при механическом расчете проводов и тросов по методу допускаемых напряжений определяется по формуле, Н/м

,

где P г н – нормативная линейная гололедная нагрузка, принимаемая по 2.5.53;

Υ nw – коэффициент надежности по ответственности, принимаемый равным: 1,0 – для ВЛ до 220 кВ; 1,3 – для ВЛ 330-750 кВ и ВЛ, сооружаемых на двухцепных и многоцепных опорах независимо от напряжения, а также для отдельных особо ответственных одноцепных ВЛ до 220 кВ при наличии обоснования;

Υ p – региональный коэффициент, принимаемый равным от 1 до 1,5. Значение коэффициента принимается на основании опыта эксплуатации и указывается в задании на проектирование ВЛ;

Υ f – коэффициент надежности по гололедной нагрузке, равный 1,3 для районов по гололеду I и II; 1,6 - для районов по гололеду III и выше;

Υ d – коэффициент условий работы, равный 0,5.

2.5.56. При расчете приближений токоведущих частей к сооружениям, насаждениям и элементам опор расчетная ветровая нагрузка на провода (тросы) определяется по 2.5.54.

2.5.57. При определении расстояний от проводов до поверхности земли и до пересекаемых объектов и насаждений расчетная линейная гололедная нагрузка на провода принимается по 2.5.55.

2.5.58. Нормативная ветровая нагрузка на конструкцию опоры определяется как сумма средней и пульсационной составляющих.

2.5.59. Нормативная средняя составляющая ветровой нагрузки на опору Q c н определяется по формуле, Н

,

где K w – принимается по 2.5.44; W – принимается по 2.5.52; C x – аэродинамический коэффициент, определяемый в зависимости от вида конструкции, согласно строительным нормам и правилам;

A – площадь проекции, ограниченная контуром конструкции, ее части или элемента с наветренной стороны на плоскость перпендикулярно ветровому потоку, вычисленная по наружному габариту, м 2 .

Для конструкций опор из стального проката, покрытых гололедом, при определении A учитывается обледенение конструкции с толщиной стенки гололеда b у при высоте опор более 50 м, а также для районов по гололеду V и выше независимо от высоты опор.

Для железобетонных и деревянных опор, а также стальных опор с элементами из труб обледенение конструкций при определении нагрузки Q c н не учитывается.

2.5.60. Нормативная пульсационная составляющая ветровой нагрузки* Q п н для опор высотой до 50 м принимается:

для свободностоящих одностоечных стальных опор:

для свободностоящих портальных стальных опор:

для свободностоящих железобетонных опор (портальных и одностоечных) на центрифугированных стойках:

для свободностоящих одностоечных железобетонных опор ВЛ до 35 кВ:

для стальных и железобетонных опор с оттяжками при шарнирном креплении к фундаментам:

Нормативное значение пульсационной составляющей ветровой нагрузки для свободностоящих опор высотой более 50 м, а также для других типов опор, не перечисленных выше, независимо от их высоты определяется в соответствии со строительными нормами и правилами на нагрузки и воздействия.

В расчетах деревянных опор пульсационная составляющая ветровой нагрузки не учитывается.

2.5.61. Нормативная гололедная нагрузка на конструкции металлических опор J н определяется по формуле, Н

,

где – принимаются согласно 2.5.53;

– коэффициент, учитывающий отношение площади поверхности элемента, подверженной обледенению, к полной поверхности элемента и принимаемый равным:

0,6 – для районов по гололеду до IV при высоте опор более 50 м и для районов по гололеду V и выше, независимо от высоты опор;

A 0 – площадь общей поверхности элемента, м 2 .

Для районов по гололеду до IV при высоте опор менее 50 м гололедные отложения на опорах не учитываются.

Для железобетонных и деревянных опор, а также стальных опор с элементами из труб гололедные отложения не учитываются.

2.5.62. Расчетная ветровая нагрузка на провода (тросы), воспринимаемая опорами, определяется по формуле, Н

,

– принимается согласно 2.5.54;

– коэффициент надежности по ветровой нагрузке, равный для проводов (тросов), покрытых гололедом и свободных от гололеда:

, Н, определяется по формуле

,

где Q н c – нормативная средняя составляющая ветровой нагрузки, принимаемая по 2.5.59;

Q н п – нормативная пульсационная составляющая ветровой нагрузки, принимаемая по 2.5.60;

Υ nw , Υ

Υ f – коэффициент надежности по ветровой нагрузке, равный:

1,3 – при расчете по первой группе предельных состояний;

1,1 – при расчете по второй группе предельных состояний.

и, Н, определяется по формуле

где Υ nw , Υ p – принимаются согласно 2.5.54;

K w принимается согласно 2.5.44;

Среднегодовая продолжительность гроз.. Удельная плотность ударов молнии n M .. Радиус стягивания Rст.. Число прямых ударов молнии в объект.. Степень опасности молнии.

Задача проектировщика – предусмотреть в проекте надежную и целесообразную систему молниезащиты объекта. Чтобы определить достаточный объем защитных мероприятий, обеспечивающих эффективную защиту от молний, необходимо представлять себе прогнозируемое число прямых ударов молнии в защищаемое сооружение. В первую очередь частота прямых ударов молнии зависит от частоты гроз в месте расположения объекта.

Так, за полярным кругом гроз почти не бывает, а в южных районах Северного Кавказа, Краснодарского края, в полосе субтропиков или в некоторых районах Сибири и Дальнего Востока, грозы – явление частое. Для оценки грозовой активности существуют региональные карты интенсивности грозовой деятельности, на которых указана средняя продолжительность гроз в часах за год. Конечно, карты эти далеки от совершенства. Тем не менее, для ориентировочных оценок они годятся. Например, для средней части России речь может идти о 30–60 грозовых часов в год, что эквивалентно 2–4 ударам молнии в год на 1 км 2 земной поверхности.

Удельная плотность грозовых разрядов

Среднегодовое число ударов молнии на 1 км 2 поверхности земли или удельная плотность грозовых разрядов (n M ) определяется по данным метеорологических наблюдений в месте размещения объекта. Если же она неизвестна, то ее можно рассчитать по следующей формуле:

n M = 6,7*Td /100 (1/км 2 год)


где Td – среднегодовая продолжительность гроз в часах, определенная по региональным картам грозовой деятельности.

Оценка частоты ударов молнии через радиус стягивания

Определив удельную плотность грозовых разрядов, проектировщику нужно оценить, какая доля этих молний попадет в защищаемый объект.
Оценку можно произвести при помощи радиуса стягивания (Rст). Опыт показывает, что объект высотой h в среднем притягивает к себе все молнии с расстояния вплоть до: Rст ≈ 3h .

Это и есть радиус стягивания. В плане надо провести линию, которая отстоит от внешнего периметра объекта на расстояние Rст. Линия ограничит площадь стягивания (Sст). Ее можно вычислить любыми доступными методами (хоть по клеточкам на миллиметровке).

Такая оценка пригодна и для объектов сложной формы, отдельные фрагменты которых имеют принципиально различную высоту. Около каждого из фрагментов, исходя из их конкретной высоты, строится кривая, ограничивающая собственную площадь стягивания. Естественно, что частично они наложатся друг на друга. Во внимание должна быть принята только площадь, ограниченная внешней огибающей, как это показано на рис. 1. Эта площадь и определит ожидаемое число ударов молнии.
Рис.1

Число прямых ударов молнии в защищаемый объект определяется просто: выраженное в квадратных километрах значение площади стягивания умножается на удельную плотность грозовых разрядов:

N M = n M *Sст .

Практические выводы

Из этой методики следуют несколько очевидных выводов.
Во-первых, число ударов молнии в одиночный сосредоточенный объект типа башни или опоры, у которого высота много больше других габаритных размеров, окажется пропорциональным квадрату его высоты (Sст=π(3h) 2 ), а у протяженных объектов (например, у линии электропередачи) – пропорциональным высоте в первой степени. Другие по конфигурации объекты занимают промежуточное положение.

Во-вторых, при скоплении многих объектов на ограниченной территории, когда их площади стягивания частично накладываются друг на друга (городская застройка), число ударов молнии в каждый из объектов будет заметно меньше, чем в тот же объект на открытой местности.
В условиях же плотной застройки, когда свободное пространство между объектами значительно меньше их высоты, то каждый из объектов практически будет собирать молнии только с площади своей крыши, а его высота перестанет играть хоть сколько-нибудь заметную роль. Всё это убедительно подтверждается опытом эксплуатации.

Степень опасности молнии

При оценке степени опасности молнии есть один нюанс, который лучше пояснить на примере. Предположим, оценивается число ударов в антенную мачту высотой 30 м. С хорошей точностью можно считать, что ее площадь стягивания представляет собой круг радиусом Rст ≈ 3h = 90 м и равна Sст = 3,14*(90) 2 ≈25 000 м 2 = 0,025 км 2 .

Если в месте размещения мачты удельная плотность разрядов молнии n M = 2, то мачта ежегодно в среднем должна принимать на себя Nм = 0,025 х 2 = 0,05 удара молнии. Это означает, что в среднем 1 удар молнии будет происходить через каждые 1/Nм = 20 лет эксплуатации. Естественно, нельзя знать, когда это случится на самом деле: с равной вероятностью это может произойти в любое время, как в первый год, так и на двадцатый год эксплуатации.

Если оценивать степень опасности молнии для конкретной антенной мачты с позиций владельцев мобильных телефонов, то можно, наверное, мириться с перерывом в связи, который может произойти один раз за 20 лет эксплуатации. У самой же телефонной компании подход может быть принципиально иным. Если она эксплуатирует не одну, а 100 антенных систем, то вряд ли компанию устроит перспектива ежегодного ремонта в среднем 100/20 = 5 антенных блоков.

Нужно также сказать о том, что оценка частоты прямых ударов молнии сама по себе мало о чем говорит. На самом деле важна не частота ударов молний, а оценка вероятности возможных разрушительных последствий от них, позволяющая определить целесообразность тех или иных мер защиты от молнии. Об этом читайте также статьи блога:

При расчете ВЛ и их элементов должны учитываться климатические условия - ветровое давление, толщина стенки гололеда, температура воздуха, степень агрессивного воздействия окружающей среды, интенсивность грозовой деятельности, пляска проводов и тросов, вибрация.

Определение расчетных условий по ветру и гололеду должно производиться на основании соответствующих карт климатического районирования территории РФ (рис.2.5.1, 2.5.2 - см. цветную вклейку) с уточнением при необходимости их параметров в сторону увеличения или уменьшения по региональным картам и материалам многолетних наблюдений гидрометеорологических станций и метеопостов за скоростью ветра, массой, размерами и видом гололедно-изморозевых отложений. В малоизученных районах* для этой цели могут организовываться специальные обследования и наблюдения.

* К малоизученным районам относятся горная местность и районы, где на 100 км трассы ВЛ для характеристики климатических условий имеется только одна репрезентативная метеорологическая станция.

Рис.2.5.1. Карта районирования территории РФ по ветровому давлению

Рис.2.5.2. Карта районирования территории РФ по тощине стенки гололеда

При отсутствии региональных карт значения климатических параметров уточняются путем обработки соответствующих данных многолетних наблюдений согласно методическим указаниям (МУ) по расчету климатических нагрузок на ВЛ и построению региональных карт с повторяемостью 1 раз в 25 лет.

Основой для районирования по ветровому давлению служат значения максимальных скоростей ветра с 10-минутным интервалом осреднения скоростей на высоте 10 м с повторяемостью 1 раз в 25 лет. Районирование по гололеду производится по максимальной толщине стенки отложения гололеда цилиндрической формы при плотности 0,9 г/см на проводе диаметром 10 мм, расположенном на высоте 10 м над поверхностью земли, повторяемостью 1 раз в 25 лет.

Температура воздуха определяется на основании данных метеорологических станций с учетом положений строительных норм и правил и указаний настоящих Правил.

Интенсивность грозовой деятельности должна определяться по картам районирования территории РФ по числу грозовых часов в году (рис.2.5.3 - см. цветную вклейку), региональным картам с уточнением при необходимости по данным метеостанций о среднегодовой продолжительности гроз.

Рис.2.5.3. Карта районирования территории РФ по среднегодовой продолжительности гроз в часах

Степень агрессивного воздействия окружающей среды определяется с учетом положений СНиПов и государственных стандартов, содержащих требования к применению элементов ВЛ, гл.1.9 и указаний настоящей главы.

Определение районов по частоте повторяемости и интенсивности пляски проводов и тросов должно производиться по карте районирования территории РФ (рис.2.5.4 - см. цветную вклейку) с уточнением по данным эксплуатации.

Рис.2.5.4. Карта районирования территории РФ по пляске проводов

По частоте повторяемости и интенсивности пляски проводов и тросов территория РФ делится на районы с умеренной пляской проводов (частота повторяемости пляски 1 раз в 5 лет и менее) и с частой и интенсивной пляской проводов (частота повторяемости более 1 раза в 5 лет).

2.5.39

При определении климатических условий должно быть учтено влияние на интенсивность гололедообразования и на скорость ветра особенностей микрорельефа местности (небольшие холмы и котловины, высокие насыпи, овраги, балки и т.п.), а в горных районах - особенностей микро- и мезорельефа местности (гребни, склоны, платообразные участки, днища долин, межгорные долины и т.п.).

2.5.40

Значения максимальных ветровых давлений и толщин стенок гололеда для ВЛ определяются на высоте 10 м над поверхностью земли с повторяемостью 1 раз в 25 лет (нормативные значения).

2.5.41

Нормативное ветровое давление , соответствующее 10-минутному интервалу осреднения скорости ветра (), на высоте 10 м над поверхностью земли принимается по табл.2.5.1 в соответствии с картой районирования территории России по ветровому давлению (рис.2.5.1) или по региональным картам районирования.

Таблица 2.5.1Нормативное ветровое давление на высоте 10 м над поверхностью земли

Полученное при обработке метеоданных нормативное ветровое давление следует округлять до ближайшего большего значения, приведенного в табл.2.5.1.

Ветровое давление определяется по формуле, Па

Ветровое давление более 1500 Па должно округляться до ближайшего большего значения, кратного 250 Па.

Для ВЛ 110-750 кВ нормативное ветровое давление должно приниматься не менее 500 Па.

Для ВЛ, сооружаемых в труднодоступных местностях, ветровое давление рекомендуется принимать соответствующим району на один выше, чем принято для данного региона по региональным картам районирования или на основании обработки материалов многолетних наблюдений.

2.5.42

Для участков ВЛ, сооружаемых в условиях, способствующих резкому увеличению скоростей ветра (высокий берег большой реки, резко выделяющаяся над окружающей местностью возвышенность, гребневые зоны хребтов, межгорные долины, открытые для сильных ветров, прибрежная полоса морей и океанов, больших озер и водохранилищ в пределах 3-5 км), при отсутствии данных наблюдений нормативное ветровое давление следует увеличивать на 40% по сравнению с принятым для данного района. Полученные значения следует округлять до ближайшего значения, указанного в табл.2.5.1.

2.5.43

Нормативное ветровое давление при гололеде с повторяемостью 1 раз в 25 лет определяется по формуле 2.5.41, по скорости ветра при гололеде .

Скорость ветра принимается по региональному районированию ветровых нагрузок при гололеде или определяется по данным наблюдений согласно методическим указаниям по расчету климатических нагрузок. При отсутствии региональных карт и данных наблюдений . Для ВЛ до 20 кВ нормативное ветровое давление при гололеде должно приниматься не менее 200 Па, для ВЛ 330-750 кВ - не менее 160 Па.

Нормативные ветровые давления (скорости ветра) при гололеде округляются до ближайших следующих значений, Па (м/с): 80 (11), 120 (14), 160 (16), 200 (18), 240 (20), 280 (21), 320 (23), 360 (24).

Значения более 360 Па должны округляться до ближайшего значения, кратного 40 Па.

2.5.44

Ветровое давление на провода ВЛ определяется по высоте расположения приведенного центра тяжести всех проводов, на тросы - по высоте расположения центра тяжести тросов, на конструкции опор ВЛ - по высоте расположения средних точек зон, отсчитываемых от отметки поверхности земли в месте установки опоры. Высота каждой зоны должна быть не более 10 м.

Для различных высот расположения центра тяжести проводов, тросов, а также средних точек зон конструкции опор ВЛ ветровое давление определяется умножением его значения на коэффициент , принимаемый по табл.2.5.2.

Таблица 2.5.2 Изменение коэффициента по высоте в зависимости от типа местности

Высота расположения приведенного центра тяжести проводов, тросов и средних точек зон конструкций опор ВЛ над поверхностью земли, м

Коэффициент для типов местности

А В С
До 15 1,00 0,65 0,40
20 1,25 0,85 0,55
40 1,50 1,10 0,80
60 1,70 1,30 1,00
80 1,85 1,45 1,15
100 2,00 1,60 1,25
150 2,25 1,90 1,55
200 2,45 2,10 1,80
250 2,65 2,30 2,00
300 2,75 2,50 2,20
350 и выше 2,75 2,75 2,35

Примечание. Типы местности соответствуют определениям, приведенным в 2.5.6.

Полученные значения ветрового давления должны быть округлены до целого числа.

Для промежуточных высот значения коэффициентов определяются линейной интерполяцией.

Высота расположения приведенного центра тяжести проводов или тросов для габаритного пролета определяется по формуле, м

,

где - среднеарифметическое значение высоты крепления проводов к изоляторам или среднеарифметическое значение высоты крепления тросов к опоре, отсчитываемое от отметок земли в местах установки опор, м;

Стрела провеса провода или троса в середине пролета при высшей температуре, м.

2.5.45

При расчете проводов и тросов ветер следует принимать направленным под углом 90° к оси ВЛ.

При расчете опор ветер следует принимать направленным под углом 0°, 45° и 90° к оси ВЛ, при этом для угловых опор за ось ВЛ принимается направление биссектрисы внешнего угла поворота, образованного смежными участками линии.


Практически любой надземный объект не застрахован от удара молнии.
На земном шаре ежегодно происходит до 16 млн. гроз, т. е. около 44 тыс. за день.

Грозовая деятельность над различными участками земной поверхности неодинакова.

Для расчета грозозащитных мероприятий необходимо знать конкретную величину, характеризующую грозовую деятельность в данной местности. Такой величиной является интенсивность грозовой деятельности, которую принято определять числом грозовых часов или грозовых дней в году, вычисляемым как среднеарифметическое значение за ряд лет наблюдений для определенного места земной поверхности.

Интенсивность грозовой деятельности в данном районе земной поверхности определяется также числом ударов молнии в год, приходящихся на 1 км2 земной поверхности.

Число часов грозовой деятельности в год берется из официальных данных метеостанций данной местности.

Связь между грозовой деятельностью и средним числом поражений молнией на 1 км2 (n) составляет:

Средняя продолжительность гроз за один грозовой день для территории европейской части России и Украины 1,5–2 ч.

Среднегодовая продолжительность гроз для Москвы - 10-20 часов/год, плотность ударов молнии в землю 1/км2 в год - 2,0.

К арты среднегодовой продолжительности гроз

(ПУЭ 7. Правила устройства электроустановок)

В странах Европы данную статистику проектировщик может легко получить с помощью автоматизированной системы определения места удара молнии. Данные системы состоят из большого количества датчиков, размещенных по всей территории Европы и образующих единую контролирующую сеть.

Информация от датчиков в реальном масштабе времени поступает на контролирующие серверы и с помощью специального пароля доступна через Интернет.


По имеющимся данным, в районах с числом грозовых часов в году π = 30 на 1 км2 поверхности земли в среднем поражается 1 раз в 2 года, т.е. среднее число разрядов молнии в 1 км2 поверхности земли за 1 грозовой час равно 0,067. Эти данные, позволяющие оценить частоту поражения молнией различных объектов.

Ожидаемое количество поражений молнией в год зданий и сооружений высотой не более 60 м, не оборудованных молниезащитой, имеющих неизменную высоту (рис. 4а), определяется по формуле:

где:
S - ширина защищаемого здания (сооружения), м; L - длина защищаемого здания (сооружения), м; hx - высота здания по его боковым сторонам, м;
п - среднее число поражений молнией 1 км2 земной поверхности в год в районе строительства здания.

Примечание: для средней полосы России можно принять п = 5


Формула приведена с учетом того, что число поражений молнией здания или сооружения пропорционально площади, занимаемой не только самим зданием или сооружением, но и суммой площадей проекций защитных зон, создаваемых гранями и углами кровли здания или сооружения.

Если части здания имеют неодинаковую высоту (рис. 4б), то зона защиты, создаваемая высотной частью, может охватывать всю остальную часть здания.

Если зона защиты высотной части не охватывает всего здания, необходимо учесть часть здания, находящуюся вне зоны защиты высотной части.

Радиус защитного действия молниеотвода определяется высотой мачты и для традиционной системы приближенно рассчитывается по формуле:
R=1,732 x h,
где h - высота от самой высокой точки дома до пика молниеотвода.

Рис.4. Зона защиты, создаваемая сооружениями


Рис. 4. Зона защиты, создаваемая сооружениями а - здания с одной высотой; б - здания, имеющие разные высоты.
Рекомендуемая формула позволяет произвести количественную оценку вероятности поражения молнией различных сооружений, расположенных в равнинной местности с достаточно однородными грунтовыми условиями.

З начение параметра п, входящего в расчетную формулу, может в несколько раз отличаться от значений, приведенных выше.

В горных районах большая часть разрядов молнии происходит между облаками, поэтому значение п может оказаться существенно меньше.

Районы, где имеются слои почвы высокой проводимости, как показывают наблюдения, избирательно поражаются разрядами молнии, поэтому значение п в этих районах может оказаться существенно выше.

Избирательно могут поражаться районы с плохо проводящими грунтами, в которых проложены протяженные металлические коммуникации (кабельные линии, металлические трубопроводы).

Избирательно поражаются также возвышающиеся над поверхностью земли металлические предметы (вышки, дымовые трубы).


Плотность ударов молнии в землю, выраженная через число поражений 1 км 2 земной поверхности за год, определяется по данным метеорологических наблюдений в месте расположения объекта или рассчитывается по формуле.

При расчете числа поражений нисходящими молниями принимается, что возвышающийся объект принимает на себя разряды, которые в его отсутствие поразили бы поверхность земли определенной площади (так называемую поверхность стягивания). Эта площадь имеет форму круга для сосредоточенного объекта (вертикальной трубы или башни) и форму прямоугольника для протяженного объекта.
Имеющаяся статистика поражений объектов разной высоты в местностях с разной продолжительностью гроз позволила определить связь между радиусом стягивания (ro) и высота объекта (hх); в среднем его можно принять ro = 3hх.
Анализ показывает, что сосредоточенные объекты поражаются нисходящими молниями высота до 150 м. Объекты выше 150 м на 90 %, поражаются восходящими молниями.

В отечественных нормативах высота молниеотвода и защищаемого объекта при любых обстоятельствах отсчитывается от уровня земли, а не от крыши сооружения, что гарантирует определенный запас при проектировании, к сожалению, не оцененный в количественном выражении.

Внешняя молниезащита
Внешняя молниезащита дома проектируется с целью перехвата молнии и отвода ее в землю.Таким образом полностью исключается попадание молнии в здание и его возгорание.
Внутренняя молниезащита
Возгорание здание не единственная опасность при грозе. Существует опасность воздействия на приборы электромагнитного поля, которое вызывает перенапряжение в электрических сетях. Это может привести к отключению сигнализации и света, вывести из строя технику.
Установка специальных устройств защиты от импульсных напряжений позволяют мгновенно реагировать на перепады напряжения в сети и сохранить работающую дорогостоящую технику.

Основные типы систем молниеотводов:

    с использованием 1 штыря на весь дом, которая, в свою очередь, подразделяется на традиционную (молниеотвод Франклина) и с ионизатором;

    с использованием системы штырей, соединенных между собой (клетка Фарадея).

    с использованием троса, натягиваемым над защищаемым сооружением.


Воздействия тока молнии


При разряде молнии в объект ток оказывает тепловые, механические и электромагнитные воздействия.
Тепловые воздействия тока молнии. Протекание тока молнии через сооружения связано с выделением тепла. При этом ток молнии может вызвать нагревание токоотвода до температуры плавления или даже испарения.
Сечение проводников должно быть выбрано с таким расчетом, чтобы была исключена опасность недопустимых перегревов.


Оплавление металла в месте соприкосновения канала молнии может быть значительным, если молния попадает в острый шпиль. При контакте канала молнии с металлической плоскостью происходит оплавление на достаточно большой площади, численно равной в квадратных миллиметрах значению амплитуды тока в килоамперах.
Механические воздействия токов молнии. Механические усилия, возникающие в различных частях здания и сооружениях при прохождении по ним токов молнии, могут быть весьма значительными.

При воздействии токов молнии деревянные конструкции могут быть полностью разрушены, а кирпичные трубы и иные надземные сооружения из камня и кирпича могут иметь значительные повреждения.
При ударе молнии в бетон образуется узкий канал разряда. Значительная энергия, выделяемая в канале разряда, может вызвать разрушение, которое приведет либо к снижению механической прочности бетона, либо к деформации конструкции.
При ударе молнии в железобетон возможно разрушение бетона с деформацией стальной арматуры.

ПРОВЕРКА МОЛНИЕЗАЩИТЫ

Система молниезащиты здания нуждается в периодической проверке. Необходимость таких мероприятий обусловлена, во-первых, важностью данных устройств для безопасности как самих объектов недвижимости, так и находящихся поблизости людей, а во-вторых, нахождением громоотводов под постоянным воздействием неблагоприятных факторов окружающей среды.

Первая проверка системы молниезащиты осуществляется непосредственно после монтажа. В дальнейшем она проводится через определенные, установленные нормативами, промежутки времени.

ПЕРИОДИЧНОСТЬ ПРОВЕРОК МОЛНИЕЗАЩИТЫ

Периодичность проверки молниезащиты определяется в соответствии с п. 1.14 РД 34.21.122-87 «Инструкции по устройству молниезащиты зданий и сооружений».

Согласно документу для всех категорий зданий она проводится не реже 1 раза в год.

В соответствии с «Правилами технической эксплуатации электроустановок потребителей» проверка заземляющих контуров проводится:

    1 раз в полгода – визуальный осмотр видимых элементов заземляющего устройства;

    1 раз в 12 лет – осмотр, сопровождающийся выборочным вскрытием грунта.

Измерение сопротивления заземляющих контуров:

    1 раз в 6 лет – на ЛЭП с напряжением до 1000 В;

    1 раз в 12 лет – на ЛЭП с напряжением свыше 1000 В.

СИСТЕМА МЕРОПРИЯТИЙ ПРОВЕРКИ МОЛНИЕЗАЩИТЫ

Проверка молниезащиты включает в себя следующие мероприятия:

    проверка связи между заземлением и молниеприемником;

    измерение переходного сопротивления болтовых соединений системы грозозащиты;

    проверка заземления;

    проверка изоляции;

    визуальный осмотр целостности элементов системы (токоотводов, молниеприемника, мест контакта между ними), отсутствия на них коррозии;

    проверка соответствия реально смонтированной системы грозозащиты проектной документации, обоснованности установки данного типа громоотвода на данном объекте;

    испытание механической прочности и целостности сварных соединений системы грозозащиты (все соединения простукиваются молотком);

    определение сопротивления заземлителя каждого отдельно стоящего молниеотвода. При последующих проверках величина сопротивления не должна превышать уровень, определенный при приемо-сдаточных испытаниях, больше чем в 5 раз;

Проверка сопротивления системы грозозащиты проводится с помощью прибора MRU-101. При этом методика проверки молниезащиты может быть разной. К наиболее распространенным относятся:
Измерение сопротивления в системе молниезащиты по трёхполюсной схеме
Измерение сопротивления в системе молниезащиты по четырехполюсной схеме
Четырехполюсная система проверки является более точной и сводит до минимума возможность ошибки.
Проверку заземления лучше всего проводить в условиях максимального сопротивления грунта – при сухой погоде или в условиях наибольшего промерзания. В остальных случаях для получения точных данных используются поправочные коэффициенты.

По итогам осмотра системы оформляется протокол проверки молниезащиты, который свидетельствует об исправности оборудования.

Согласно действующим нормам для определения класса молниезащиты требуются подробные данные объекта и соответственно факторы риска. Для их получения предлагается заполнять несколько опросных листов. Но благодаря этой табличке можно предварительно выбрать класс молниезащиты и факторы риска без подробных данных.

Мин. амплитудное значение тока молнии

Макс. амплитудное значение тока молнии

Вероятность попадания в систему молниезащиты

3 кА

200 кА

5 кА

150 кА

10 кА

100 кА

16 кА

100 кА

Молниезащита промышленных зданий и сооружений
(Справочник по электроснабжению промышленных предприятий. Промышленные электрические сети).

Определение необходимости молниезащиты производственных зданий и сооружений, не вошедших в указанные в табл. , может производиться по причинам, дающим основание для применения молниезащитных устройств.
Причинами для необходимости устройств молниезащиты может служить число поражений молнией в год более 0,05 для зданий и сооружений I и II степени огнестойкости; 0,01 - для III, IV и V степени огнестойкости (независимо от активности грозовой деятельности в рассматриваемом районе).
В зданиях большой площади (при ширине 100 м и более) необходимо согласно § 2-15 и 2-27 СН305-69 предусматривать меры для выравнивания потенциала внутри здания во избежание повреждения электроустановок и поражения людей при прямых ударах молний в здание.

Классификация зданий и сооружений по устройству молниезащиты и необходимости ее выполнения

Здания и сооружения

Местность, в которой здания и сооружения подлежат обязательной молниезащите

Производственные здания и сооружения с производствами, относимыми к классам В-І и В-ІІ ПУЭ На всей территории СССР
Производственные здания и сооружения с помещениями, относимыми к классам В-Іа, В-Іб и В-ІІа по Правилам устройства электроустановок В местностях со средней грозовой деятельностью 10 ч и более в год

ІІ

Наружные технические установки и наружные склады, содержащие взрывоопасные газы, пары, горючие и легковоспламеняющиеся жидкости (например, газгольдеры, емкости, сливо-наливные эстакады и т. п.),относимые к классу В-ІІа по ПУЭ На всей территории СССР

ІІ

Производственные здания и сооружения с производствами, относимыми к классам П-І, П-ІІ или П-ІІа по ПУЭ В местностях со средней грозовой деятельностью 20 грозовых часов и более в год при ожидаемом количестве поражений молнией здания или сооружения в год не менее 0,05 для зданий или сооружений І степени огнестойкости и 0,01 - для III, IV и V степени стойкости

ІІІ

Производственные здания и сооружения III, IV и V степени огнестойкости, относимые по ступеням пожарной опасности к категориям Г и Д по СНиП ІІ-М, 2-62, а также открытые склады твердых горючих веществ, относимые к классу П-ІІІ по ПУЭ В местностях со средней грозовой деятельностью 20 грозовых часов и более в год при ожидаемом количестве поражений молнией здания или сооружения в год не менее 0,05

ІІІ

Наружные установки, в которых применяются или хранятся горючие жидкости с температурой вспышки паров выше 45 оС, относимые к классу П-ІІІ по ПУЭ

ІІІ

Животноводческие и птицеводческие здания и сооружения сельскохозяйственных предприятий III, IV и V степени огнестойкости следующего назначения: коровники и телятники на 100 голов и более, свинарники для животных всех возрастов и групп на 100 голов и более; конюшни на 40 голов и более; птичники для всех видов возрастов птицы на 1000 голов и более В местностях со средней грозовой деятельностью 40 грозовых часов и более в год

ІІІ

Вертикальные вытяжные трубы промышленных предприятий и котельных, водонапорные и силосные башни, пожарные вышки высота 15-30 м от поверхности земли В местностях со средней грозовой деятельностью 20 грозовых часов и более в год

ІІІ

Вертикальные вытяжные трубы промышленных предприятий и котельных высотой более 30 м от поверхности земли На всей территории СССР

ІІІ

Жилые и общественные здания, возвышающиеся на уровне общего массива застройки более, чем на 25 м, а также отдельно стоящие здания высотой более 30 м, удаленные от массива застройки не менее, чем на 100 м В местностях со средней грозовой деятельностью 20 грозовых часов и более в год

ІІІ

Общественные здания IV и V степени огнестойкости следующего назначения: детские сады и ясли; учебные и спальные корпуса, столовые санаториев, учреждений отдыха и пионерских лагерей, спальные корпуса больниц; клубы и кинотеатры В местностях со средней грозовой деятельностью 20 грозовых часов и более в год

ІІІ

Здания и сооружения, имеющие историческое и художественное значение, находящиеся в ведении управления изобразительных искусств и охраны памятников Министерства культуры СССР На всей территории СССР

ІІІ


Разъяснение Управления по надзору в электроэнергетике Ростехнадзора о совместном применении "Инструкции по молниезащите зданий и сооружений" (РД 34.21.122-87) и "Инструкции по молниезащите зданий, сооружений и промышленных коммуникаций" (СО 153-34.21.122-2003)

ФЕДЕРАЛЬНАЯ СЛУЖБА

Руководителям Федеральных
государственных учреждений
управлений и энергетических
инспекций государственного
энергетического надзора

ПО ЭКОЛОГИЧЕСКОМУ, ТЕХНОЛОГИЧЕСКОМУ

И АТОМНОМУ НАДЗОРУ

УПРАВЛЕНИЕ

ПО НАДЗОРУ В ЭЛЕКТРОЭНЕРГЕТИКЕ

109074, Москва, К-74

Китайгородский пр., 7

тел. 710-55-13, факс 710-58-29

01.12.2004

10-03-04/182

На №

от

В управление по надзору в электроэнергетике Федеральной службы по надзору в электроэнергетике (Ростехнадзор) и ранее в Госэнергонадзор от многочисленных организаций поступают вопросы о порядке использования "Инструкции по молниезащите зданий, сооружений и промыш ленных коммуникаций" (СО 153-34.21.122-2003), утвержденной приказом Минэнерго России от 30.06.2003 № 280. Обращается внимание на трудности пользования данной Инструкцией из-за от сутствия справочных материалов. Также задаются вопросы о правомерности приказа РАО "ЕЭС России" от 14.08.2003 № 422 "О пересмотре нормативно-технических документов (НТД) и порядке их действия в соответствии с ФЗ "О техническом регулировании" и о сроках подготовки посо бий к инструкцииСО 153-34.21.122-2003 .

Управление по надзору в электроэнергетике Ростехнадзора в связи с этим разъясняет.

В соответствии с положением Федерального закона от 27.12.2002№ 184-ФЗ"О техническом регулировании", ст. 4 органы исполнительной власти вправе утверждать (издавать) документы (акты) только рекомендательного характера. К такому типу документа и относится "Инструкция по молниезащите зданий, сооружений и промышленных коммуникаций".

Приказ Минэнерго России от 30.06.2003 № 280 не отменяет действие предыдущего издания "Инструкции по молниезащите зданий и сооружений" (РД 34.21.122-87), а слово "взамен" в преди словии отдельных изданий инструкцииСО 153-34.21.122-2003, не означает недопустимость использования предыдущей редакции. Проектные организации вправе использовать при определе нии исходных данных и при разработке защитных мероприятий положение любой из упомянутых инструкций или их комбинацию.

Срок подготовки справочных материалов к "Инструкции по молниезащите зданий, сооруже ний и промышленных коммуникаций",СО 153-34.21.122-2003, к настоящему времени не опреде лен из-за отсутствия источников финансирования этой работы.

Приказ РАО "ЕЭС России" от 14.08.2003 № 422 является корпоративным документом и не имеет силы для организаций, не входящих в структуру РАО "ЕЭС России".

Начальник Управления Н.П. Дорофеев

ГОСТы по молниезащите

ГОСТ Р МЭК 62561.1-2014 Компоненты системы молниезащиты. Часть 1. Требования к соединительным компонентам
ГОСТ Р МЭК 62561.2-2014 Компоненты системы молниезащиты. Часть 2. Требования к проводникам и заземляющим электродам
ГОСТ Р МЭК 62561.3-2014 Компоненты систем молниезащиты. Часть 3. Требования к разделительным искровым разрядникам
ГОСТ Р МЭК 62561.4-2014 Компоненты систем молниезащиты. Часть 4. Требования к устройствам крепления проводников
ГОСТ Р МЭК 62561.5-2014 Компоненты систем молниезащиты. Часть 5. Требования к смотровым колодцам и уплотнителям заземляющих электродов
ГОСТ Р МЭК 62561.6-2015 Компоненты системы молниезащиты. Часть 6. Требования к счетчикам ударов молнии
ГОСТ Р МЭК 62561-7-2016 Компоненты системы молниезащиты. Часть 7. Требования к смесям, нормализующим заземление

ГОСТ Р МЭК 62305-1-2010 Менеджмент риска. Защита от молнии. Часть 1. Общие принципы
ГОСТ Р МЭК 62305-2-2010 Менеджмент риска. Защита от молнии. Часть 2. Оценка риска
ГОСТ Р МЭК 62305-4-2016 Защита от молнии. Часть 4. Защита электрических и электронных систем внутри зданий и сооружений

ГОСТ Р54418.24-2013 (МЭК 61400-24:2010) Возобновляемая энергетика. Ветроэнергетика. Установки ветроэнергетические. Часть 24. Молниезащита

Международная электротехническая комиссия (МЭК; англ. International Electrotechnical Commission, IEC; фр. Commission électrotechnique internationale, CEI) - международная некоммерческая организация по стандартизации в области электрических, электронных и смежных технологий.
Стандарты МЭК имеют номера в диапазоне 60 000 - 79 999, и их названия имеют вид типа МЭК 60411 Графические символы. Номера старых стандартов МЭК были преобразованы в 1997 году путём добавления числа 60 000, например, стандарт МЭК 27 получил номер МЭК 60027. Стандарты, развитые совместно с Международной организацией по стандартизации, имеют названия вида ISO/IEC 7498-1:1994 Open Systems Interconnection: Basic Reference Model.

Международной Электротехнической Комиссией (МЭК) разработаны стандарты, в которых изложены принципы защиты зданий и сооружений любого назначения от перенапряжений, позволяющие правильно подойти к вопросам проектирования строительных конструкций и системы молниезащиты объекта, рациональному размещению оборудования и прокладке коммуникаций.

К ним, в первую очередь, относятся следующие стандарты:

    IEC-61024-1 (1990-04): «Молниезащита строительных конструкций. Часть 1. Основные принципы».

    IEC-61024-1-1 (1993-09): «Молниезащита строительных конструкций. Часть 1. Основныепринципы. Руководство А: Выбор уровней защиты для молниезащитных систем».

    IEC-61312-1 (1995-05): «Защита от электромагнитного импульса молнии. Часть 1. Основные принципы».

Требования, изложенные в данных стандартах, формируют «Зоновую концепцию защиты», основными принципами которой являются:

    применение строительных конструкций с металлическими элементами (арматурой, каркасами, несущими элементами и т.п.), электрически связанными между собой и системой заземления, и образующими экранирующую среду для уменьшения воздействия внешних электромагнитных влияний внутри объекта («клетка Фарадея»);

    наличие правильно выполненной системы заземления и выравнивания потенциалов;

    деление объекта на условные защитные зоны и применение специальных устройств защиты от перенапряжений (УЗИП);

    соблюдение правил размещения защищаемого оборудования и подключенных к нему проводников относительно другого оборудования и проводников, способных оказывать опасное воздействие или вызвать наводки.

 

 

Это интересно: