→ Общее уравнение динамики термех. Общее уравнение динамики

Общее уравнение динамики термех. Общее уравнение динамики

Общее уравнение динамики имеет вид:

где -активные силы, приложенные к системе;

-масса k -ой точки;

-ускорение k -ой точки;

Виртуальное перемещение k -ой точки.

Уравнение (3.10) показывает, что в любой фиксированный момент времени сумма элементарных работ активных сил и сил инерции на любых виртуальных перемещениях равна нулю при условии, что на систему наложены идеальные и удерживающие связи.

Важным свойством общего уравнения динамики является то, что оно не содержит реакций идеальных связей. Иногда это уравнение можно использовать для исследования движения механических систем и в тех случаях, когда не все связи являются идеальными, например, когда имеются связи с трением. Для этого следует к активным силам добавить те составляющие реакций, которые обусловлены наличием сил трения.

Вычисление суммы работ сил инерции на виртуальных перемещениях твердого тела проводится по следующим формулам.

1. При поступательном движении тела:

где
-главный вектор сил инерции тела (M - масса тела, - ускорение центра масс),

- виртуальное перемещение центра масс тела.

2. При вращении тела вокруг неподвижной оси:

где
-главный момент сил инерции тела относительно оси вращения (- момент инерции тела относительно оси вращения, - угловое ускорение тела),

- виртуальное угловое перемещение тела.

3. При плоско - параллельном движении:

где
- главный момент сил инерции тела относительно оси, проходящей через центр массС тела.

Частным случаем общего уравнения динамики является принцип виртуальных перемещений (общее уравнение статики). Действительно, в том случае, когда механическая система находится в покое, все силы инерции равны нулю, и из общего уравнения динамики вытекает принцип виртуальных перемещений: для того чтобы механическая система, на которую наложены идеальные связи находилась в равновесии, необходимо и достаточно, чтобы сумма элементарных работ всех активных сил, приложенных к рассматриваемой системе, на любом из ее виртуальных перемещений была равна нулю

(3.11)

Рассмотрим процедуру использования уравнения (3.10) для составления дифференциальных уравнений движения систем с двумя степенями свободы:

1. Изобразить механическую систему в произвольный момент времени.

2. Показать на рисунке активные силы и моменты, а также силы и моменты, соответствующие неидеальным связям (например, силы трения).

3. Определить главные векторы и главные моменты сил инерции.

4. Выбрать обобщенные координаты в числе, равном числу степеней свободы системы.

5. Дать виртуальное перемещение, соответствующее одной из степеней свободы системы, считая при этом виртуальные перемещения, соответствующие остальным степеням свободы, равными нулю.

6. Вычислить сумму элементарных работ всех сил и моментов (см. п. 2 и 3) на соответствующих виртуальных перемещениях и приравнять эту сумму нулю.

7. Повторить п. 4 - 6 для каждого независимого движения системы.

При применении общего уравнения динамики к системам с двумя и большим числом степеней свободы, в связи с громоздкостью выкладок, можно использовать следующие рекомендации:

1. Сделать предположение о направлении ускорений точек системы.

2. Направить на рисунке силы инерции в стороны, противоположные выбранным направлениям соответствующих ускорений.

3. Определить знаки элементарных работ сил инерции в соответствии с их направлениями на рисунке и избранными направлениями виртуальных перемещений точек системы.

4. Если искомые ускорения оказываются положительными, то сделанные предположения о направлениях ускорений подтверждаются, если отрицательными, то соответствующие ускорения направлены в другую сторону.

Общее уравнение динамики для системы с любыми связями (объединенный принцип Даламбера-Лагранжа или общее уравнение механики) :

где – активная сила, приложенная к -ой точке системы; – сила реакции связей; – сила инерции точки; – возможное перемещение.

Оно в случае равновесия системы при обращении в нуль всех сил инерции точек системы переходит в принцип возможных перемещений. Обычно его применяют для систем с идеальными связями, для которых выполняется условие

В этом случае (229) принимает одну из форм:

,

,

. (230)

Таким образом, согласно общему уравнению динамики, в любой момент движения системы с идеальными связями сумма элементарных работ всех активных сил и сил инерции точек системы равна нулю на любом возможном перемещении системы, допускаемом связями .

Общему уравнению динамики можно придать другие, эквивалентные формы. Раскрывая скалярное произведение векторов, его можно выразить в виде

где – координаты -ой точки системы. Учитывая, что проекции сил инерции на оси координат через проекции ускорений на эти оси выражаются соотношениями

,

общему уравнению динамики можно придать форму

В этом виде его называют общим уравнением динамики в аналитической форме .

При использовании общего уравнения динамики необходимо уметь вычислять элементарную работу сил инерции системы на возможных перемещениях. Для этого применяются соответствующие формулы для элементарной работы, полученные для обычных сил. Рассмотрим их применение для сил инерции твердого тела в частных случаях его движения.

При поступательном движении. В этом случае тело имеет три степени свободы и вследствие наложенных связей может совершать только поступательное движение. Возможные перемещения тела, которые допускают связи, тоже являются поступательными.

Силы инерции при поступательном движении приводятся к равнодействующей . Для суммы элементарных работ сил инерции на поступательном возможном перемещении тела получим

где – возможное перемещение центра масс и любой точки тела, так как поступательное возможное перемещение у всех точек тела одинаково: одинаковы и ускорения, т. е. .

При вращении твердого тела вокруг неподвижной оси. Тело в этом случае имеет одну степень свободы. Оно может вращаться вокруг неподвижной оси . Возможное перемещение, которое допускается наложенными связями, является тоже поворотом тела на элементарный угол вокруг неподвижной оси.

Силы инерции, приведенные к точке на оси вращения, сводятся к главному вектору и главному моменту . Главный вектор сил инерции приложен к неподвижной точке, и его элементарная работа на возможном перемещении равна нулю. У главного момента сил инерции не равную нулю элементарную работу совершит только его проекция на ось вращения . Таким образом, для суммы работ сил инерции на рассматриваемом возможном перемещении имеем

,

если угол сообщить в направлении дуговой стрелки углового ускорения .

При плоском движении. Связи, наложенные на твердое тело, допускают в этом случае только плоское возможное перемещение. В общем случае оно состоит из поступательного возможного перемещения вместе с полюсом, за который выберем центр масс, и поворота на элементарный угол вокруг оси , проходящей через центр масс и перпендикулярной плоскости, параллельно которой может совершать тело плоское движение.

Так как силы инерции при плоском движении твердого тела можно привести к главному вектору и главному моменту (если за центр приведения выбрать центр масс), то сумма элементарных работ сил инерции на плоском возможном перемещении сведется к элементарной работе отавною вектора сил инерции на возможном перемещении центра масс и элементарной работе главного момента сил инерции на элементарном поворотном перемещении вокруг оси , проходящей через центр масс. При этом не равную нулю элементарную работу может совершить только проекция главного момента сил инерции на ось , т.е. . Таким образом, в рассматриваемом случае имеем

На основании принципа Даламбера справедливы равенства:

где – активная сила; – реакция связей; – сила инерции точки (рис. 3.36).

Умножая скалярно каждое из соотношений (3.45) на возможное перемещение точки и суммируя по всем точкам системы, получим

(3.46)

Равенство (3.46) – общее уравнение динамики для механической системы с любыми связями. Если связи идеальные, то и выражение (3.46) принимает одну из форм:


Общее уравнение динамики (объединенный принцип Даламбера–Лагранжа). В любой момент движения системы с идеальными связями сумма элементарных работ всех активных сил и сил инерции точек системы равны нулю на любом возможном перемещении системы.

Обобщенные координаты

Пусть система состоит из N точек и положение ее определяется 3N координатами точек системы (рис. 3.37). На систему наложены l

голономных двухсторонних связей, уравнения которых s =1,2,…,l .

Таким образом, 3N координат связаны l уравнениями и независимых координат будет n =3N -l .

В качестве n независимых координат можно выбрать любые независимые параметры

Независимые параметры, однозначно определяющие положение системы, называют обобщенными координатами системы .

Рис. 3.37

В общем случае они являются функциями декартовых координат точек системы:

Можно выразить декартовы координаты через обобщенные координаты:

Для радиус–вектора каждой точки системы получим

Если связи стационарные, то время в (3.47) явно входить не будет. Для голономных связей вектор возможного перемещения точки можно выразить в форме:

Если связи голономные, то число независимых возможных перемещений (или вариаций ) совпадает с числом независимых обобщенных координат. Следовательно, число степеней свободы голономной системы равно числу независимых обобщенных координат этой системы, т.е. n =3N -l.

Для неголономных систем в общем случае число независимых вариаций (возможных перемещений) меньше числа обобщенных координат. Поэтому число степеней свободы неголономной системы, равное числу независимых возможных перемещений, тоже меньше числа обобщенных координат системы.



Производные обобщенных координат по времени называются обобщенными скоростями и обозначаются

Обобщенные силы

Рис. 3.38

Определение обобщенных сил . Рассмотрим голономную систему из N материальных точек, имеющую n степеней свободы и находящуюся под действием системы сил (рис. 3.38). Положение системы определяется n обобщенными координатами т.е.

Вектор возможного перемещения –

(3.48)

Вычислим сумму элементарных работ сил, действующих на систему, на возможном перемещении системы:

(3.49)

Подставляя (3.48) в (3.49) и меняя порядок суммирования, получим

(3.50)

Скалярная величина называется обобщенной силой, отнесенной к обобщенной координате q i .

Размерность обобщенной силы . Из формулы (3.50) получается размерность обобщенной силы [Q ]=[A ]/[q ]. Если обобщенная координата имеет размерность длины, то обобщенная сила имеет размерность силы [Н], если же обобщенной координатой является угол (размерность – 1), то обобщенная сила имеет размерность момента силы [Н×м].

Вычисление обобщенных сил. 1. Обобщенную силу можно вычислить по формуле, ее определяющей:

где F kx ,F yx ,F kz – проекции силы на оси координат; x k ,y yx ,z k – координаты точки приложения силы

2. Обобщенные силы являются коэффициентами при соответствующих вариациях обобщенных координат в выражении для элементарной работы (3.50):

3. Если системе сообщить такое возможное перемещение, при котором изменяется только одна обобщенная координата q j то из (3.52) имеем

Индекс q i в числителе указывает, что сумма работ вычисляется на возможном перемещении, при котором изменяется (варьируется) только координата q i .

4. Для потенциальных сил:

(3.53)

где – силовая функция.

Из выражения (3.51) с учетом равенств (3.53) следует,

Таким образом,

где потенциальная энергия системы.

3.5.6. Общее уравнение динамики в обобщенных силах.
Условия равновесия сил

Общее уравнение динамики (3.50)

Вектор возможного перемещения согласно (3.48) равен

С учетом этого выражения общее уравнение динамики принимает вид

Преобразуем его, поменяв порядок суммирования

(3.54)

Здесь – обобщенная сила активных сил, соответствующая обобщенной координате q i ; – обобщенная сила инерции, соответствующая обобщенной координате q i .Тогда уравнение (3.54) принимает вид

Приращения обобщенных координат произвольны и независимые друг от друга. Поэтому коэффициенты при них в последнем уравнении должны быть равны нулю:

(3.55)

Эти уравнения эквивалентны общему уравнению динамики.

Если силы, действующие на механическую систему эквивалентны нулю, т.е. механическая система движется равномерно прямолинейно или сохраняет состояние покоя, то силы инерции ее точек равны нулю. Следовательно, обобщенные силы инерции системы равны нулю , тогда уравнения (3.55) принимают вид

(3.56)

Равенства (3.56) выражают условия равновесия сил в обобщенных силах.

В случае консервативных сил

Следовательно, условия равновесия консервативной системы сил имеют вид

Принцип возможных перемещений : для равновесия механической системы с идеальными связями необходимо и достаточно, чтобы сумма элементарных работ всех действующих на нее активных сил при любом возможном перемещении была равна нулю. или в проекциях: .

Принцип возможных перемещений дает в общей форме условия равновесия для любой механической системы, дает общий метод решения задач статики .

Если система имеет несколько степеней свободы, то уравнение принципа возможных перемещений составляют для каждого из независимого перемещений в отдельности, т.е. будет столько уравнений, сколько система имеет степеней свободы.

Принцип возможных перемещений удобен тем, что при рассмотрении системы с идеальными связями их реакции не учитываются и необходимо оперировать только активными силами.

Принцип возможных перемещений формулируется следующим образом:

Для того, чтобы матер. система, подчиненная идеальным связям находилась в состоянии покоя, необходимо и достаточно, чтобы сумма элементарных работ, производимых активными силами на возможных перемещениях точек системы была положительная

Общее уравнение динамики - при движении системы с идеальными связями в каждый данный момент времен сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равна нулю. Уравнение использует принцип возможных перемещений и принцип Даламбера и позволяет составить дифференциальные уравнения движения любой механической системы. Дает общий метод решения задач динамики.

Последовательность составления:

а) к каждому телу прикладывают действующие на него задаваемые силы, а также условно прикладывают силы и моменты пар сил инерции;

б) сообщают системе возможные перемещения;

в) составляют уравнения принципа возможных перемещений, считая систему находящейся в равновесии.

Следует отметить, что общее уравнение динамики можно применять и для систем с неидеальными связями, только в этом случае реакции неидеальных связей, таких, например, как сила трения или момент трения качения, необходимо отнести к категории активных сил.

Работа на возможном перемещении как активных, так и сил инерций , ищется также как и элементарная работа на действительном перемещении:

Возможная работа силы: .

Возможная работа момента (пары сил): .

Обобщенными координатами механической системы называются независимые между собой параметры q 1 , q 2 , …, q S любой размерности, однозначно определяющие положение системы в любой момент времени.

Число обобщенных координат равно S - числу степеней свободы механической системы. Положение каждой ν-й точки системы, то есть ее радиус вектор в общем случае всегда можно выразить в виде функции обобщенных координат:


Общее уравнение динамики в обобщенных координатах выглядит в виде системы S уравнений следующим образом:

;

;

……..………. ;

(25)

………..……. ;

,

здесь - обобщенная сила, соответствующая обобщенной координате :

(26)

а - обобщенная сила инерции, соответствующая обобщенной координате :

Число независимых между собою возможных перемещений системы называется числом степеней свободы этой системы. Например. шар на плоскости может перемещаться в любом направлении, но любое его возможное перемещение может быть получено как геометрическая сумма двух перемещений вдоль двух взаимно перпендикулярных осей. Свободное твердое тело имеет 6 степеней свободы.

Обобщенные силы. Каждой обобщенной координате можно вычислить соответствующую ей обобщенную силу Q k .

Вычисление производится по такому правилу.

Чтобы определить обобщенную силу Q k , соответствующую обобщенной координате q k , надо дать этой координате приращение (увеличить координату на эту величину), оставив все другие координаты неизменными, вычислить сумму работ всех сил, приложенных к системе, на соответствующих перемещениях точек и поделить ее на приращение координаты :

(7)

где - перемещение i -той точки системы, полученное за счет изменения k -той обобщенной координаты.

Обобщенная сила определяется с помощью элементарных работ. Поэтому эту силу можно вычислить иначе:

И так как есть приращение радиуса-вектора за счет приращения координаты при остальных неизменных координатах и времени t , отношение можно определять как частную производную . Тогда

где координаты точек - функции обобщенных координат (5).

Если система консервативная, то есть движение происходит под действием сил потенциального поля, проекции которых , где , а координаты точек - функции обобщенных координат, то

Обобщенная сила консервативной системы есть частная производная от потенциальной энергии по соответствующей обобщенной координате со знаком минус.

Конечно, при вычислении этой обобщенной силы потенциальную энергию следует определять как функцию обобщенных координат

П = П(q 1 , q 2 , q 3 ,…,q s ).

Замечания.

Первое. При вычислении обобщенных сил реакции идеальных связей не учитываются.

Второе. Размерность обобщенной силы зависит от размерности обобщенной координаты.

Уравнения Лагранжа 2-го рода выводятся из общего уравнения динамики в обобщенных координатах. Число уравнений соответствует числу степеней свободы:

(28)

Для составления уравнения Лагранжа 2-го рода выбираются обобщенные координаты и находятся обобщенные скорости . Находится кинетическая энергия системы, которая является функцией обобщенных скоростей, и, в некоторых случаях, обобщенных координат. Выполняются операции дифференцирования кинетической энергии, предусмотренные левыми частями уравнений Лагранжа.Полученные выражения приравниваются обобщенным силам, для нахождения которых помимо формул (26) часто при решении задач используют следующие:

(29)

В числителе правой части формулы - сумма элементарных работ все активных сил на возможном перемещении системы, соответствующем вариации i-й обобщенной координаты - . При этом возможном перемещении все остальные обобщенные координаты не изменяются. Полученные уравнения являются дифференциальными уравнениями движения механической системы с S степенями свободы.

Введение

В кинематике рассматривается описание простейших типов механических движений. При этом не затрагивались причины вызывающие изменения положения тела относительно других тел, а систему отсчета выбирается из соображений удобства при решении той или иной задачи. В динамике, прежде всего, представляют интерес причины, вследствие которых некоторые тела начинают двигаться относительно других тел, а также факторы, обуславливающие появления ускорения. Однако законы в механике, строго говоря, в разных системах отсчета имеют различный вид. Установлено, что существуют такие системы отсчета, в которых законы и закономерности не зависят от выбора системы отсчета. Такие системы отсчета получили название инерциальные системы (ИСО). В этих системах отсчета величина ускорения зависит только действующих сил и не зависит от выбора системы отсчета. Инерциальной системой отсчета является гелиоцентрическая система отсчета , начало отсчета которой находится в центре Солнца. Системы отсчета, движущиеся равномерно прямолинейно относительно инерциальной являются также инерциальными, а системы отсчета движущиеся с ускорением относительно инерциальной системы являются неинерциальными . По этим причинам поверхности земли, строго говоря, является неинерциальной системой отсчета. Во многих задач, систему отсчета, связанную с Землей, с хорошей степенью точности можно считать инерциальной.

Основные законы динамики в инерциальных и неинерциальных

Системах отсчета

Способность тела сохранять состояние равномерного прямолинейного движения или покоится в ИСО, называется инертностью тела . Мерой инертности тела является масса . Масса величина скалярная, в системе СИ измеряется в килограммах (кг). Мерой взаимодействия является величина, называемой силой . Сила– величина векторная, в системе СИ измеряется в Ньютонах (Н).

Первый закон Ньютона. В инерциальных системах отсчета точка движется равномерно прямолинейно или покоится в том случае, если сумма всех сил действующих на нее равна нулю, т.е.:

где – силы, действующие на данную точку.

Второй закон Ньютона. В инерциальных системах тело движется с ускорением, если сумма всех сил, действующих на него не равна нулю, причем произведение массы тела на его ускорение равно сумме этих сил, т.е.:

Третий закон Ньютона. Силы, с которыми тела действуют друг на друга, равны по величине и противоположны по направлению, т.е.: .

Силы, как меры взаимодействия, всегда рождаются парами.

Для успешного решения большинства задач с использованием законов Ньютона необходимо придерживаться некоторой последовательности действия (своего рода алгоритма).

Основные пункты алгоритма.

1. Проанализировать условие задачи и выяснить, с какими телами взаимодействует рассматриваемое тело. Исходя из этого, определить количество сил, действующих на рассматриваемое тело. Допустим, число сил, действующих на тело, равно . Затем выполнить схематически правильный рисунок, на котором построить все силы, действующие на тело.

2. Используя условие задачи, определить направление ускорения рассматриваемого тела, и изобразить вектор ускорения на рисунке.

3. Записать в векторной форме второй закон Ньютона, т.е.:

где силы, действующие на тело.

4. Выбрать инерциальную систему отсчета. Изобразить на рисунке прямоугольную декартову систему координат, ось ОХ которой направить по вектору ускорения, ось ОY и ОZ направить перпендикулярно оси ОХ.

5. Воспользовавшись основным свойством векторных равенств, записать второй закон Ньютона для проекций векторов на оси координат, т.е.:

6. Если в задаче кроме сил и ускорений требуется определить координаты и скорость, то кроме второго закона Ньютона необходимо использовать и кинематические уравнения движения. Записав систему уравнений, необходимо обратить внимание на то, чтобы число уравнений равнялось числу неизвестных в данной задаче.

Рассмотрим неинерциальную систему отсчета вращающуюся с постоянной угловой скоростью вокруг оси, перемещающейся поступательно со скоростью относительно инерциальной системы. В этом случае ускорение точки в инерциальной системе () связано с ускорением в неинерциальной системе () соотношением:

где – ускорением неинерциальной системы относительно инерциальной системы , линейная скорость точки в неинерциальной системе. Из последнего соотношения вместо ускорения подставим в равенство (1), получим выражение:

Это соотношение называется вторым законом Ньютона в неинерциальной системе отсчета.

Силы инерции. Введем обозначения:

1. – поступательная сила инерции ;

2. сила Кориолиса ;

3 центробежная сила инерции .

В задачах поступательная сила инерции изображается против вектора ускорением поступательного движения неинерциальной системы отсчета (), центробежная сила инерции –– от центра вращения по радиусу (); направление силы Кориолиса определяется по правилу буравчика для векторного произведения векторов .

Строго говоря, силы инерции не являются в полном смысле силами, т.к. для них не выполняется третий закон Ньютона, т.е. они не являются парными.

Силы

Сила всемирного тяготения. Сила всемирного тяготения возникает в процессе взаимодействия между телами, обладающими массами, и вычисляется из соотношения:

. (4)

Коэффициент пропорциональности получил название гравитационной постоянной . Его величина в системе СИ равна .

Сила реакции. Силы реакции возникают при взаимодействии тела с различными конструкциями, ограничивающими его положение в пространстве. Например, на тело, подвешенное на нити, действует сила реакции, называемая обычно силой натяжения. Сила натяжения нити направлена всегда вдоль нити. Формулы для вычисления ее величины нет. Обычно величину ее находят либо из первого, либо из второго закона Ньютона. К силам реакции также относят силы, действующие на частицу на гладкой поверхности. Ее называют нормальной силой реакции , обозначают . Сила реакции всегда направлена перпендикулярно рассматриваемой поверхности . Со стороны тела на гладкую поверхность действует сила, называемая силой нормального давления (). По третьему закону Ньютона сила реакции равна по величине силе нормального давления, но векторы этих сил противоположны по направлению.

Сила упругости. Силы упругости возникают в телах в том случае, если тела деформированы, т.е. если изменена форма тела или его объем. При прекращении деформации силы упругости исчезают. Следует заметить, что, хотя силы упругости возникают при деформациях тел, не всегда деформация приводит к возникновению сил упругости. Силы упругости возникают в телах, способных восстанавливать свою форму после прекращения внешнего воздействия. Такие тела, и соответствующие им деформации, называются упругими . При пластической деформации изменения полностью не исчезают после прекращения внешнего воздействия. Ярким примером проявления сил упругости могут служить силы, возникающие в пружинах, подверженных деформации. Для упругих деформаций, возникающих в деформированных телах, сила упругости всегда пропорциональна величине деформации, т.е.:

, (5)

где коэффициент упругости (или жесткости) пружины, вектор деформации пружины.

Данное утверждение получило название закона Гука.

Сила трения. При движении одного тела по поверхности другого возникают силы, препятствующие этому движению. Такие силы принято называть силами трения скольжения . Величина силы трения покоя может изменяться в зависимости от приложенной внешней силы. При некотором значении внешней силы сила трения покоя достигает максимального значения. После этого начинается скольжение тела. Экспериментально установлено, что сила трения скольжения прямо пропорциональна силе нормального давления тела на поверхность. Согласно третьему закону Ньютона сила нормального давления тела на поверхность всегда равна силе реакции, с которой сама поверхность действует на движущееся тело. С учетом этого формула для вычисления величины силы трения скольжения имеет вид:

, (6)

где величина силы реакции; коэффициент трения скольжения. Сила трения скольжения, действующая на движущееся тело, всегда направлена против его скорости, вдоль соприкасающихся поверхностей.

Сила сопротивления. При движении тел в жидкостях и газах возникают также силы трения, но они существенно отличаются от сил сухого трения. Эти силы называются силами вязкого трения , или силы сопротивления . Силы вязкого трения возникают только при относительном движении тел. Силы сопротивления зависят от многих факторов, а именно: от размеров и формы тел, от свойств среды (плотности, вязкости), от скорости относительного движения. При малых скоростях сила сопротивления прямо пропорционально зависит от скорости движения тела относительно среды, т.е.:

. (7)

При больших скоростях сила сопротивления пропорциональна квадрату скорости движения тела относительно среды, т.е.:

, (8)

где некоторые коэффициенты пропорциональности, называемые коэффициентами сопротивления .

Основное уравнение динамики

Основное уравнение динамики материальной точки представляет собой не что иное, как математическое выражение второго закона Ньютона:

. (9)

В инерциальной системе отсчета в сумму всех сил входят только силы, являющиеся мерами взаимодействий, в неинерциальных системах в сумму сил входят силы инерции.

С математической точки зрения соотношение (9) представляет собой дифференциальное уравнение движения точки в векторном виде. Его решение –– есть основная задача динамики материальной точки.

Примеры решения задач

Задача №1. На лист бумаги помещен стакан. С каким ускорением надо привести в движение лист, чтобы выдернуть его из-под стакана, если коэффициент трения между стаканом и листом бумаги равен 0,3?

Предположим, что при некоторой силе , действующей на лист бумаги, стакан движется совместно с листом. Изобразим отдельно силы, действующие на стакан массой . На стакан действуют следующие тела: Земля с силой тяжести , лист бумаги с силой реакции , лист бумаги с силой трения , направленной по скорости движения стакана. Движение стакана является равноускоренным, следовательно, вектор ускорения направлен по скорости движения стакана.


Изобразим вектор ускорения стакана на рисунке. Запишем второй закон Ньютона в векторной форме для сил, действующих на стакан:

.

Направим ось ОХ по вектору ускорения стакана, а ось OY ¾ вертикально вверх. Запишем второй закон Ньютона в проекциях на эти оси координат, получим следующие уравнения:

(1.1)

При увеличении силы , действующей на лист бумаги, возрастает величина силы трения, с которой лист бумаги действует на стакан. При некотором значении силы величина силы трения достигает своего максимального значения, равного по величине силе трения скольжения. С этого момента начинается скольжение стакана относительно поверхности бумаги. Предельное значение силы трения связано с силой реакции, действующей на стакан следующим соотношением:

Из равенства (1.2) выражаем величину силы реакции, а затем подставляем в последнее соотношение, имеем . Из полученного соотношения находим величину силы трения и поставляем в равенство (1.1), получим выражение для определения максимального ускорения стакана:

Подставив числовые значения величин в последнее равенство, найдем величину максимального ускорения стакана:

.

Полученная величина ускорения стакана равна минимальному ускорению листа бумаги, при котором его можно «выдернуть» из-под стакана.

Ответ: .

Изобразим все силы, действующие на тело. Кроме внешней силы на тело действует Земля с силой тяжести , горизонтальная поверхность с силой реакции и силой трения , направленной против скорости движения тела. Тело движется равноускоренно, и, следовательно, вектор его ускорения направлен по скорости движения. Изобразим вектор на рисунке. Выбираем систему координат так, как показано на рисунке. Записываем второй закон Ньютона в векторной форме:

.

Используя основное свойство векторных равенств, запишем уравнения для проекций векторов, входящих в последнее векторное равенство:

Записываем соотношение для силы трения скольжения

Из равенства (2.2) находим величину силы реакции

Из полученного выражения подставим в равенство (2.3) вместо величины силы реакции , получим выражение

Подставив полученное выражение для силы трения в равенство (2.1), будем иметь формулу для вычисления ускорения тела:

В последнюю формулу подставим числовые данные в системе СИ, найдем величину ускорения движения груза:

Ответ: .

Для минимальной величины силы определим направление силы трения, которая действует на покоящийся брусок. Представим, что сила меньше той минимальной силы, достаточной для того, чтобы тело оставалось в покое. В этом случае тело будет двигаться вниз, и, сила трения , приложенная к нему, будет направлена вертикально вверх. Для того чтобы остановить тело, нужно увеличить величину приложенной силы . Кроме того, на данное тело действует Земля с силой тяжести , направленной вертикально вниз, а также стенка с силой реакции , направленной горизонтально влево. Изобразим на рисунке все силы, действующие на тело. Возьмем прямоугольную декартову систему координат, оси которой направим так, как показано на рисунке. Для покоящегося тела запишем первый закон Ньютона в векторной форме:

.

Для найденного векторного равенства запишем равенства для проекций векторов на оси координат, получим следующие уравнения:

При минимальном значении внешней силы величина силы трения покоя достигает максимального значения, равного величине силы трения скольжения:

Из равенства (3.1) находим величину силы реакции , и подставляем в равенство (3.3), получим следующее выражение для силы трения:

.

Подставим вместо силы трения в равенство (3.2) правую часть данного соотношения, получим формулу для вычисления величины приложенной силы :

Из последней формулы находим величину силы :

.

Ответ: .

Изобразим все силы, действующие на шарик, движущийся в воздухе вертикально вниз. На него действует Земля с силой тяжести и воздух с силой сопротивления . Изобразим рассмотренные силы на рисунке. В начальный момент времени равнодействующая всех сил имеет максимальное значение, так как скорость шарика равна нулю и сила сопротивления также равна нулю. В этот момент шарик имеет максимальное ускорение, равное . По мере движения шарика скорость его движения увеличивается, и, следовательно, сила сопротивления воздуха возрастает. В некоторый момент времени сила сопротивления достигает величины, равной величине силы тяжести. С этого момента времени шарик движется равномерно. Запишем первый закон Ньютона в векторной форме для равномерного движения шарика:

.

Направим ось OY вертикально вниз. Запишем для данного векторного равенства равенство для проекций векторов на ось OY:

. (4.1)

Сила сопротивления зависит от площади поперечного сечения шарика и величины его скорости движения следующим образом:

, (4.2)

где коэффициент пропорциональности, называемый коэффициентом сопротивления.

Из равенств (4.1) и (4.2) вытекает следующее соотношение:

. (4.3)

Выразим массу шарика через его плотность и объем, а объем в свою очередь, - через радиус шарика:

. (4.4)

Из данного выражения находим массу и подставляем в равенство (4.3), получим следующее равенство:

. (4.5)

Выражаем площадь поперечного сечения шарика через его радиус:

С учетом соотношения (4.6) равенство (4.5) примет следующий вид:

.

Обозначим как радиус первого шарика; как радиус второго шарика. Запишем формулы для скоростей установившегося движения первого и второго шариков:

Из полученных равенств находим отношение скоростей:

.

Из условия задачи отношение радиусов шариков равно двум. Используя это условие, находим отношение скоростей:

.

Ответ: .

На тело, движущееся вверх вдоль наклонной плоскости, действуют внешние тела: а) Земля с силой тяжести , направленной вертикально вниз; б) наклонная плоскость с силой реакции , направленной перпендикулярно наклонной плоскости; в) наклонная плоскость с силой трения , направленной против движения тела; г) внешнее тело с силой , направленной вверх вдоль наклонной плоскости. Под действием этих сил тело движется равноускоренно вверх по наклонной плоскости, и, следовательно, вектор ускорения направлен по перемещению тела. Изобразим вектор ускорения на рисунке. Запишем второй закон Ньютона в векторной форме:

.

Выберем прямоугольную декартову систему координат, ось ОХ которой направим по ускорению движения тела, а ось OY - перпендикулярно наклонной плоскости. Запишем второй закон Ньютона в проекциях на эти оси координат, получим следующие уравнения:

Сила трения скольжения связана с силой реакции следующим соотношением:

Из равенства (5.2) находим величину силы реакции и подставляем в равенство (5.3), имеем следующее выражение для силы трения:

. (5.4)

Подставим в равенство (5.1) вместо силы трения правую часть равенства (5.4), получим следующее уравнение для вычисления величины искомой силы:

Вычислим величину силы :

Ответ: .

Изобразим все силы, действующие на тела и на блок. Рассмотрим процесс движения тел, связанных нитью, перекинутой через блок. Нить является невесомой и нерастяжимой, следовательно, величина силы натяжения на любом участке нити будет одинаковой, т.е. и .

Перемещения тел за любые промежутки времени будут одинаковыми, и, следовательно, в любой момент времени одинаковыми будут величины скоростей и ускорений этих тел. Из того, что блок вращается без трения и является невесомым, следует, что сила натяжения нити по обе стороны блока будет одинаковой, т.е.: .

Отсюда вытекает равенство сил натяжения нити, действующей на первое и второе тело, т.е. . Изобразим на рисунке векторы ускорений первого и второго тела. Изобразим две оси ОХ. Первую ось направим вдоль вектора ускорения первого тела, вторую - вдоль вектора ускорения второго тела. Запишем второй закон Ньютона для каждого тела в проекции на эти оси координат:

Учитывая, что , и выразив из первого уравнения , подставим во второе уравнение, получим

Из последнего равенства находим величину ускорения:

.

Из равенства (1) находим величину силы натяжения:

Ответ: , .

На маленькое колечко при его вращении по окружности действуют две силы: сила тяжести , направленная вертикально вниз, и сила реакции , направленная к центру кольца. Изобразим эти силы на рисунке, а также покажем на нем траекторию движения колечка. Вектор центростремительного ускорения колечка лежит в плоскости траектории и направлен к оси вращения. Изобразим на рисунке. Запишем второй закон Ньютона в векторной форме для вращающегося колечка:

.

Выберем прямоугольную систему координат, ось ОХ которой направим по центростремительному ускорению , а ось OY - вертикально вверх вдоль оси вращения. Запишем второй закон Ньютона в проекциях на эти оси координат:

Из равенства (7.2) находим величину силы реакции и подставляем в равенство (7.1), получим выражение:

. (7.3)

Центростремительное ускорение связано с частотой вращения соотношением: , где радиус вращения маленького колечка. Подставим правую часть последнего равенства вместо в формулу (7.3), получим следующее соотношение:

. (7.4)

Из рисунка находим величину тангенса угла альфа . С учетом этого выражения равенство (7.4) примет вид:

Из последнего уравнения находим искомую высоту :

Ответ: .

На тело, вращающееся вместе с диском, действуют три силы: сила тяжести , сила реакции и сила трения , направленная к оси вращения. Изобразим все силы на рисунке. Покажем на данном рисунке направление вектора центростремительного ускорения . Записываем второй закон Ньютона в векторной форме:

.

Выберем прямоугольную декартову систему координат так, как показано на рисунке. Запишем второй закон Ньютона в проекциях на оси координат:

; (8.1)

. (8.2)

Запишем соотношение для центростремительного ускорения:

. (8.3)

Подставим правую часть равенства (8.3) вместо центростремительного ускорения в равенство (8.1), получим:

. (8.4)

Из равенства (8.4) видно, что величина силы трения прямо пропорциональна радиусу вращения , поэтому при увеличении радиуса вращения сила трения покоя увеличивается, и при некоторой величине сила трения покоя достигает максимального значения, равного силе трения скольжения ().

С учетом равенства (8.2), получим выражения для максимальной силы трения покоя:

.

Подставим правую часть полученного равенства вместо силы трения равенство (4), получим следующее соотношение:

Из данного уравнения находим предельное значение радиуса вращения:

Ответ: .

Во время полета капли на нее действует две силы: сила тяжести и сила сопротивления . Изобразим все силы на рисунке. Выберем вертикально направленную ось OY, начало отсчета которой расположим на поверхности Земли. Запишем основное уравнение динамики:

.

Спроектируем равенство на ось OY, будем иметь соотношение:

Разделим обе части последнего равенства на и одновременно умножим обе части на , учтем что , получим выражение:

Разделим обе части этого выражения на , получим соотношение:

.

Интегрируем последнее соотношением, получаем зависимость скорости от времени: .

Константу найдем из начальных условий (), получим искомую зависимость скорости от времени:

.

Определяем максимальную скорость из условия :

.

Ответ: ; .

Изобразим на рисунке силы, действующие на шайбу. Запишем второй закон Ньютона в проекциях на оси OX, OY и OZ

Т.к. , то для всей траектории движения шайбы для силы трения справедливо формула , которая, с учетом равенства для OZ, преобразуется к виду:

С учетом этого соотношения равенство для оси OX примет вид

Спроектируем второй закон Ньютона на касательную к траектории движения шайбы в рассматриваемой точке, получим соотношение:

где – величина тангенциального ускорения. Сравнивая правые части последних равенств, делаем вывод о том, что .

Поскольку и , то учетом предыдущего соотношения имеем равенство , интегрирование которого приводит к выражению , где – константа интегрирования. Подставим в последнее выражение , получим зависимость скорости от угла :

Константу определим из начальных условий (когда . ) . С учетом этого запишем окончательную зависимость

.

Минимальное значение скорости достигается тогда, когда , и вектор скорости направлен параллельно оси OX а ее величина равна .

 

 

Это интересно: