→ СВЧ-излучение. Характеристики, особенности, применение

СВЧ-излучение. Характеристики, особенности, применение

Содержание статьи

СВЕРХВЫСОКИХ ЧАСТОТ ДИАПАЗОН, частотный диапазон электромагнитного излучения (100ё300 000 млн. герц), расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области. Этот частотный диапазон соответствует длинам волн от 30 см до 1 мм; поэтому его называют также диапазоном дециметровых и сантиметровых волн. В англоязычных странах он называется микроволновым диапазоном; имеется в виду, что длины волн очень малы по сравнению с длинами волн обычного радиовещания, имеющими порядок нескольких сотен метров.

Так как по длине волны излучение СВЧ-диапазона является промежуточным между световым излучением и обычными радиоволнами, оно обладает некоторыми свойствами и света, и радиоволн. Например, оно, как и свет, распространяется по прямой и перекрывается почти всеми твердыми объектами. Во многом аналогично свету оно фокусируется, распространяется в виде луча и отражается. Многие радиолокационные антенны и другие СВЧ-устройства представляют собой как бы увеличенные варианты оптических элементов типа зеркал и линз.

В то же время СВЧ-излучение сходно с радиоизлучением вещательных диапазонов в том отношении, что оно генерируется аналогичными методами. К СВЧ-излучению применима классическая теория радиоволн, и его можно использовать как средство связи, основываясь на тех же принципах. Но благодаря более высоким частотам оно дает более широкие возможности передачи информации, что позволяет повысить эффективность связи. Например, один СВЧ-луч может нести одновременно несколько сотен телефонных разговоров. Сходство СВЧ-излучения со светом и повышенная плотность переносимой им информации оказались очень полезны для радиолокационной и других областей техники.

ПРИМЕНЕНИЕ СВЧ-ИЗЛУЧЕНИЯ

Радиолокация.

Волны дециметрово-сантиметрового диапазона оставались предметом чисто научного любопытства до начала Второй мировой войны, когда возникла настоятельная необходимость в новом и эффективном электронном средстве раннего обнаружения. Только тогда начались интенсивные исследования СВЧ-радиолокации, хотя принципиальная ее возможность была продемонстрирована еще в 1923 в Научно-исследовательской лаборатории ВМС США. Суть радиолокации в том, что в пространство испускаются короткие, интенсивные импульсы СВЧ-излучения, а затем регистрируется часть этого излучения, вернувшаяся от искомого удаленного объекта – морского судна или самолета.

Связь.

Радиоволны СВЧ-диапазона широко применяются в технике связи. Кроме различных радиосистем военного назначения, во всех странах мира имеются многочисленные коммерческие линии СВЧ-связи. Поскольку такие радиоволны не следуют за кривизной земной поверхности, а распространяются по прямой, эти линии связи, как правило, состоят из ретрансляционных станций, установленных на вершинах холмов или на радиобашнях с интервалами ок. 50 км. Параболические или рупорные антенны, смонтированные на башнях, принимают и передают дальше СВЧ-сигналы. На каждой станции перед ретрансляцией сигнал усиливается электронным усилителем. Поскольку СВЧ-излучение допускает узконаправленные прием и передачу, для передачи не требуется больших затрат электроэнергии.

Хотя система башен, антенн, приемников и передатчиков может показаться весьма дорогостоящей, в конечном счете все это с лихвой окупается благодаря большой информационной емкости СВЧ-каналов связи. Города Соединенных Штатов соединены между собой сложной сетью более чем из 4000 ретрансляционных СВЧ-звеньев, образующих систему связи, которая простирается от одного океанского побережья до другого. Каналы этой сети способны пропускать тысячи телефонных разговоров и многочисленные телевизионные программы одновременно.

Спутники связи.

Система ретрансляционных радиобашен, необходимая для передачи СВЧ-излучения на большие расстояния, может быть построена, конечно, только на суше. Для межконтинентальной же связи требуется иной способ ретрансляции. Здесь на помощь приходят связные искусственные спутники Земли; выведенные на геостационарную орбиту, они могут выполнять функции ретрансляционных станций СВЧ-связи.

Электронное устройство, называемое активно-ретрансляционным ИСЗ, принимает, усиливает и ретранслирует СВЧ-сигналы, передаваемые наземными станциями. Первые экспериментальные ИСЗ такого типа («Телстар», «Релэй» и «Синком») успешно осуществляли уже в начале 1960-х годов ретрансляцию телевизионного вещания с одного континента на другой. На основе этого опыта были разработаны коммерческие спутники межконтинентальной и внутренней связи. Спутники последней межконтинентальной серии «Интелсат» были выведены в различные точки геостационарной орбиты таким образом, что зоны их охвата, перекрываясь, обеспечивают обслуживание абонентов во всем мире. Каждый спутник серии «Интелсат» последних модификаций предоставляет клиентам тысячи каналов высококачественной связи для одновременной передачи телефонных, телевизионных, факсимильных сигналов и цифровых данных.

Термообработка пищевых продуктов.

СВЧ-излучение применяется для термообработки пищевых продуктов в домашних условиях и в пищевой промышленности. Энергия, генерируемая мощными электронными лампами, может быть сконцентрирована в малом объеме для высокоэффективной тепловой обработки продуктов в т.н. микроволновых или СВЧ-печах, отличающихся чистотой, бесшумностью и компактностью. Такие устройства применяются на самолетных бортовых кухнях, в железнодорожных вагонах-ресторанах и торговых автоматах, где требуются быстрые подготовка продуктов и приготовление блюд. Промышленность выпускает также СВЧ-печи бытового назначения.

Научные исследования.

СВЧ-излучение сыграло важную роль в исследованиях электронных свойств твердых тел. Когда такое тело оказывается в магнитном поле, свободные электроны в нем начинают вращаться вокруг магнитных силовых линий в плоскости, перпендикулярной направлению магнитного поля. Частота вращения, называемая циклотронной, прямо пропорциональна напряженности магнитного поля и обратно пропорциональна эффективной массе электрона. (Эффективная масса определяет ускорение электрона под воздействием какой-либо силы в кристалле. Она отличается от массы свободного электрона, которой определяется ускорение электрона под действием какой-либо силы в вакууме. Различие обусловлено наличием сил притяжения и отталкивания, с которыми действуют на электрон в кристалле окружающие атомы и другие электроны.) Если на твердое тело, находящееся в магнитном поле, падает излучение СВЧ-диапазона, то это излучение сильно поглощается, когда его частота равна циклотронной частоте электрона. Данное явление называется циклотронным резонансом; оно позволяет измерить эффективную массу электрона. Такие измерения дали много ценной информации об электронных свойствах полупроводников, металлов и металлоидов.

Излучение СВЧ-диапазона играет важную роль также в исследованиях космического пространства. Астрономы многое узнали о нашей Галактике, исследуя излучение с длиной волны 21 см, испускаемое газообразным водородом в межзвездном пространстве. Теперь можно измерять скорость и определять направление движения рукавов Галактики, а также расположение и плотность областей газообразного водорода в космосе.

ИСТОЧНИКИ СВЧ-ИЗЛУЧЕНИЯ

Быстрый прогресс в области СВЧ-техники в значительной мере связан с изобретением специальных электровакуумных приборов – магнетрона и клистрона, способных генерировать большие количества СВЧ-энергии. Генератор на обычном вакуумном триоде, используемый на низких частотах, в СВЧ-диапазоне оказывается весьма неэффективным.

Двумя главными недостатками триода как СВЧ-генератора являются конечное время пролета электрона и межэлектродная емкость. Первый связан с тем, что электрону требуется некоторое (хотя и малое) время, чтобы пролететь между электродами вакуумной лампы. За это время СВЧ-поле успевает изменить свое направление на обратное, так что и электрон вынужден повернуть обратно, не долетев до другого электрода. В результате электроны без всякой пользы колеблются внутри лампы, не отдавая свою энергию в колебательный контур внешней цепи.

Магнетрон.

В магнетроне, изобретенном в Великобритании перед Второй мировой войной, эти недостатки отсутствуют, поскольку за основу взят совершенно иной подход к генерации СВЧ-излучения – принцип объемного резонатора. Подобно тому как у органной трубы данного размера имеются собственные акустические резонансные частоты, так и у объемного резонатора имеются собственные электромагнитные резонансы. Стенки резонатора действуют как индуктивность, а пространство между ними – как емкость некой резонансной цепи. Таким образом, объемный резонатор подобен параллельному резонансному контуру низкочастотного генератора с отдельными конденсатором и катушкой индуктивности. Размеры объемного резонатора выбираются, конечно, так, чтобы данному сочетанию емкости и индуктивности соответствовала нужная резонансная сверхвысокая частота.

В магнетроне (рис. 1) предусмотрено несколько объемных резонаторов, симметрично расположенных вокруг катода, находящегося в центре. Прибор помещают между полюсами сильного магнита. При этом электроны, испускаемые катодом, под действием магнитного поля вынуждены двигаться по круговым траекториям. Их скорость такова, что они в строго определенное время пересекают на периферии открытые пазы резонаторов. При этом они отдают свою кинетическую энергию, возбуждая колебания в резонаторах. Затем электроны возвращаются на катод, и процесс повторяется. Благодаря такому устройству время пролета и межэлектродные емкости не мешают генерации СВЧ-энергии.

Магнетроны могут быть сделаны большого размера, и тогда они дают мощные импульсы СВЧ-энергии. Но у магнетрона имеются свои недостатки. Например, резонаторы для очень высоких частот становятся столь малыми, что их трудно изготавливать, а сам такой магнетрон из-за своих малых размеров не может быть достаточно мощным. Кроме того, для магнетрона нужен тяжелый магнит, причем требуемая масса магнита возрастает с увеличением мощности прибора. Поэтому для самолетных бортовых установок мощные магнетроны не подходят.

Клистрон.

Для этого электровакуумного прибора, основанного на несколько ином принципе, не требуется внешнее магнитное поле. В клистроне (рис. 2) электроны движутся по прямой от катода к отражательной пластине, а затем обратно. При этом они пересекают открытый зазор объемного резонатора в форме бублика. Управляющая сетка и сетки резонатора группируют электроны в отдельные «сгустки», так что электроны пересекают зазор резонатора только в определенные моменты времени. Промежутки между сгустками согласованы с резонансной частотой резонатора таким образом, что кинетическая энергия электронов передается резонатору, вследствие чего в нем устанавливаются мощные электромагнитные колебания. Этот процесс можно сравнить с ритмичным раскачиванием первоначально неподвижных качелей.

Первые клистроны были довольно маломощными приборами, но позднее они побили все рекорды магнетронов как СВЧ-генераторов большой мощности. Были созданы клистроны, выдававшие до 10 млн. ватт мощности в импульсе и до 100 тыс. ватт в непрерывном режиме. Система клистронов исследовательского линейного ускорителя частиц выдает 50 млн. ватт СВЧ-мощности в импульсе.

Клистроны могут работать на частотах до 120 млрд. герц; однако при этом их выходная мощность, как правило, не превышает одного ватта. Разрабатываются варианты конструкции клистрона, рассчитанного на большие выходные мощности в миллиметровом диапазоне.

Клистроны могут также служить усилителями СВЧ-сигналов. Для этого нужно входной сигнал подавать на сетки объемного резонатора, и тогда плотность электронных сгустков будет изменяться в соответствии с этим сигналом.

Лампа бегущей волны (ЛБВ).

Еще один электровакуумный прибор для генерации и усиления электромагнитных волн СВЧ-диапазона – лампа бегущей волны. Она представляет собой тонкую откачанную трубку, вставляемую в фокусирующую магнитную катушку. Внутри трубки имеется замедляющая проволочная спираль. Вдоль оси спирали проходит электронный луч, а по самой спирали бежит волна усиливаемого сигнала. Диаметр, длина и шаг спирали, а также скорость электронов подобраны таким образом, что электроны отдают часть своей кинетической энергии бегущей волне.

Радиоволны распространяются со скоростью света, тогда как скорость электронов в луче значительно меньше. Однако, поскольку СВЧ-сигнал вынужден идти по спирали, скорость его продвижения вдоль оси трубки близка к скорости электронного луча. Поэтому бегущая волна достаточно долго взаимодействует с электронами и усиливается, поглощая их энергию.

Если на лампу не подается внешний сигнал, то усиливается случайный электрический шум на некоторой резонансной частоте и ЛБВ бегущей волны работает как СВЧ-генератор, а не усилитель.

Выходная мощность ЛБВ значительно меньше, чем у магнетронов и клистронов на той же частоте. Однако ЛБВ допускают настройку в необычайно широком частотном диапазоне и могут служить очень чувствительными малошумящими усилителями. Такое сочетание свойств делает ЛБВ очень ценным прибором СВЧ-техники.

Плоские вакуумные триоды.

Хотя клистроны и магнетроны более предпочтительны как СВЧ-генераторы, благодаря усовершенствованиям в какой-то мере восстановлена важная роль вакуумных триодов, особенно в качестве усилителей на частотах до 3 млрд. герц.

Трудности, связанные с временем пролета, устранены благодаря очень малым расстояниям между электродами. Нежелательные межэлектродные емкости сведены к минимуму, поскольку электроды сделаны сетчатыми, а все внешние соединения выполняются на больших кольцах, находящихся вне лампы. Как и принято в СВЧ-технике, применен объемный резонатор. Резонатор плотно охватывает лампу, и кольцевые соединители обеспечивают контакт по всей окружности резонатора.

Генератор на диоде Ганна.

Такой полупроводниковый СВЧ-генератор был предложен в 1963 Дж.Ганном, сотрудником Уотсоновского научно-исследовательского центра корпорации ИБМ. В настоящее время подобные приборы дают мощности лишь порядка милливатт на частотах не более 24 млрд. герц. Но в этих пределах он имеет несомненные преимущества перед маломощными клистронами.

Поскольку диод Ганна представляет собой монокристалл арсенида галлия, он в принципе более стабилен и долговечен, нежели клистрон, в котором должен быть нагреваемый катод для создания потока электронов и необходим высокий вакуум. Кроме того, диод Ганна работает при сравнительно низком напряжении питания, тогда как для питания клистрона нужны громоздкие и дорогостоящие источники питания с напряжением от 1000 до 5000 В.

СХЕМНЫЕ КОМПОНЕНТЫ

Коаксиальные кабели и волноводы.

Для передачи электромагнитных волн СВЧ-диапазона не через эфир, а по металлическим проводникам нужны специальные методы и проводники особой формы. Обычные провода, по которым передается электричество, пригодные для передачи низкочастотных радиосигналов, неэффективны на сверхвысоких частотах.

Любой отрезок провода имеет емкость и индуктивность. Эти т.н. распределенные параметры приобретают очень важное значение в СВЧ-технике. Сочетание емкости проводника с его собственной индуктивностью на сверхвысоких частотах играет роль резонансного контура, почти полностью блокирующего передачу. Поскольку в проводных линиях передачи невозможно устранить влияние распределенных параметров, приходится обращаться к другим принципам передачи СВЧ-волн. Эти принципы воплощены в коаксиальных кабелях и волноводах.

Коаксиальный кабель состоит из внутреннего провода и охватывающего его цилиндрического наружного проводника. Промежуток между ними заполнен пластиковым диэлектриком, например тефлоном или полиэтиленом. С первого взгляда это может показаться похожим на пару обычных проводов, но на сверхвысоких частотах их функция иная. СВЧ-сигнал, введенный с одного конца кабеля, на самом деле распространяется не по металлу проводников, а по заполненному изолирующим материалом промежутку между ними.

Коаксиальные кабели хорошо передают СВЧ-сигналы частотой до нескольких миллиардов герц, но на более высоких частотах их эффективность снижается, и они непригодны для передачи больших мощностей.

Обычные каналы для передачи волн СВЧ-диапазона имеют форму волноводов. Волновод – это тщательно обработанная металлическая труба прямоугольного или кругового поперечного сечения, внутри которой распространяется СВЧ-сигнал. Упрощенно говоря, волновод направляет волну, заставляя ее то и дело отражаться от стенок. Но на самом деле распространение волны по волноводу есть распространение колебаний электрического и магнитного полей волны, как и в свободном пространстве. Такое распространение в волноводе возможно лишь при условии, что его размеры находятся в определенном соотношении с частотой передаваемого сигнала. Поэтому волновод точно рассчитывается, так же точно обрабатывается и предназначается только для узкого интервала частот. Другие частоты он передает плохо либо вообще не передает. Типичное распределение электрического и магнитного полей внутри волновода показано на рис. 3.

Чем выше частота волны, тем меньше размеры соответствующего ей прямоугольного волновода; в конце концов эти размеры оказываются столь малы, что чрезмерно усложняется его изготовление и снижается передаваемая им предельная мощность. Поэтому были начаты разработки круговых волноводов (кругового поперечного сечения), которые могут иметь достаточно большие размеры даже на высоких частотах СВЧ-диапазона. Применение кругового волновода сдерживается некоторыми трудностями. Например, такой волновод должен быть прямым, иначе его эффективность снижается. Прямоугольные же волноводы легко изгибать, им можно придавать нужную криволинейную форму, и это никак не сказывается на распространении сигнала. Радиолокационные и другие СВЧ-установки обычно выглядят как запутанные лабиринты из волноводных трактов, соединяющих разные компоненты и передающих сигнал от одного прибора другому в пределах системы.

Твердотельные компоненты.

Твердотельные компоненты, например полупроводниковые и ферритовые, играют важную роль в СВЧ-технике. Так, для детектирования, переключения, выпрямления, частотного преобразования и усиления СВЧ-сигналов применяются германиевые и кремниевые диоды.

Для усиления применяются также специальные диоды – варикапы (с управляемой емкостью) – в схеме, называемой параметрическим усилителем. Широко распространенные усилители такого рода служат для усиления крайне малых сигналов, так как они почти не вносят собственные шумы и искажения.

Твердотельным СВЧ-усилителем с низким уровнем шума является и рубиновый мазер. Такой мазер, действие которого основано на квантовомеханических принципах, усиливает СВЧ-сигнал за счет переходов между уровнями внутренней энергии атомов в кристалле рубина. Рубин (или другой подходящий материал мазера) погружается в жидкий гелий, так что усилитель работает при чрезвычайно низких температурах (лишь на несколько градусов превышающих температуру абсолютного нуля). Поэтому уровень тепловых шумов в схеме очень низок, благодаря чему мазер пригоден для радиоастрономических, сверхчувствительных радиолокационных и других измерений, в которых нужно обнаруживать и усиливать крайне слабые СВЧ-сигналы.

Для изготовления СВЧ-переключателей, фильтров и циркуляторов широко применяются ферритовые материалы, такие, как оксид магния-железа и железо-иттриевый гранат. Ферритовые устройства управляются посредством магнитных полей, причем для управления потоком мощного СВЧ-сигнала достаточно слабого магнитного поля. Ферритовые переключатели имеют то преимущество перед механическими, что в них нет движущихся частей, подверженных износу, а переключение осуществляется весьма быстро. На рис. 4 представлено типичное ферритовое устройство – циркулятор. Действуя подобно кольцевой транспортной развязке, циркулятор обеспечивает следование сигнала только по определенным трактам, соединяющим различные компоненты. Циркуляторы и другие ферритовые переключающие устройства применяются при подключении нескольких компонентов СВЧ-системы к одной и той же антенне. На рис. 4 циркулятор не пропускает передаваемый сигнал на приемник, а принимаемый сигнал – на передатчик.

В СВЧ-технике находит применение и туннельный диод – сравнительно новый полупроводниковый прибор, работающий на частотах до 10 млрд. герц. Он используется в генераторах, усилителях, частотных преобразователях и переключателях. Его рабочие мощности невелики, но это первый полупроводниковый прибор, способный эффективно работать на столь высоких частотах.

Антенны.

СВЧ-антенны отличаются большим разнообразием необычных форм. Размер антенны приблизительно пропорционален длине волны сигнала, а поэтому для СВЧ-диапазона вполне приемлемы конструкции, которые были бы слишком громоздки на более низких частотах.

В конструкциях многих антенн учитываются те свойства СВЧ-излучения, которые сближают его со светом. Типичными примерами могут служить рупорные антенны, параболические отражатели, металлические и диэлектрические линзы. Применяются также винтовые и спиральные антенны, часто изготавливаемые в виде печатных схем.

Группы щелевых волноводов можно расположить так, чтобы получилась нужная диаграмма направленности для излучаемой энергии. Часто применяются также диполи типа хорошо известных телевизионных антенн, устанавливаемых на крышах. В таких антеннах нередко имеются одинаковые элементы, расположенные с интервалами, равными длине волны, и повышающие направленность за счет интерференции.

СВЧ-антенны обычно проектируют так, чтобы они были предельно направленными, поскольку во многих СВЧ-системах очень важно, чтобы энергия передавалась и принималась в точно заданном направлении. Направленность антенны возрастает с увеличением ее диаметра. Но можно уменьшить антенну, сохранив ее направленность, если перейти на более высокие рабочие частоты.

Многие «зеркальные» антенны с параболическим или сферическим металлическим отражателем спроектированы специально для приема крайне слабых сигналов, приходящих, например, от межпланетных космических аппаратов или от далеких галактик. В Аресибо (Пуэрто-Рико) действует один из крупнейших радиотелескопов с металлическим отражателем в виде сферического сегмента, диаметр которого равен 300 м. Антенна имеет неподвижное («меридианное») основание; ее приемный радиолуч перемещается по небосводу благодаря вращению Земли. Самая большая (76 м) полностью подвижная антенна расположена в Джодрелл-Бенке (Великобритания).

Новое в области антенн – антенна с электронным управлением направленностью; такую антенну не нужно механически поворачивать. Она состоит из многочисленных элементов – вибраторов, которые можно электронными средствами по-разному соединять между собой и тем самым обеспечивать чувствительность «антенной решетки» в любом нужном направлении.

Многие не раз слышали выражение СВЧ, видели эти буквы на разных приборах или инструкциях к ним. Однако далеко не все знают, что обозначает эта аббревиатура. Подробная расшифровка СВЧ поможет лучше понять суть этого термина и узнать, в каких областях он применяется чаще всего.

Сверхвысокая частота

Дословно сокращённое выражение расшифровывается как сверхвысокая частота. Для обывателя эти слова могут показаться непонятными. Чтобы лучше понять, что значит СВЧ, необходимо иметь хотя бы минимум знаний из области физики. Эта наука изучает разные типы электромагнитного излучения:

  • сверхдлинное (радиоволны);
  • терагерцевое;
  • инфракрасное;
  • оптическое;
  • ультрафиолетовое;
  • жёсткое и рентгеновское.

Волны сверхвысокой частоты занимают место между частотой инфракрасной дальней области и ультравысокими частотами. Их длина образует широкий диапазон от одного миллиметра до тридцати сантиметров. В сравнении со сверхдлинными радиоволнами, длина которых измеряется сотнями метров, размер СВЧ-волн чрезвычайно мал, поэтому их ещё называют сантиметровым или дециметровым диапазоном. В зарубежной литературе излучение сверхвысокой частоты принято называть микроволновым.

Особенность волн со сверхвысокой частотой заключается в том, что они объединяют в себе свойства, присущие как световому излучению, так и радиоволнам. К примеру, так же как и лучи света, СВЧ-волны способны отражаться, фокусироваться, распространяться по прямой.

Спутниковая связь и радиолокация

Ещё одно сходство такого излучения со световыми лучами заключается в способности передавать информацию в режиме повышенной плотности. Т. е. один луч сверхвысокой частоты может транслировать до тысячи телефонных разговоров. Это свойство позволило с успехом применить СВЧ-излучение:

Ещё одна сфера, где эффективно используются СВЧ-волны - это спутниковая связь . На суше она обеспечивается с помощью системы радиобашен, транслирующих сигналы на большие расстояния. В случае с межконтинентальными переговорами роль ретрансляторов выполняют искусственные спутники, располагающиеся на геостационарной орбите Земли. В каждом спутнике сосредотачиваются тысячи каналов связи, гарантирующих одновременную передачу высококачественных телефонных и телевизионных сигналов пользователям современных устройств.

Применение в быту

Наверняка каждый, кто хоть раз задумывался, что значит СВЧ, как расшифровывается это выражение, сразу же вспоминал про микроволновую печь. Этот устройство является, пожалуй, самым известным примером использования волн сверхвысокой частоты в быту. В его основе заложено тепловое воздействие СВЧ-волн.

Это свойство было случайно обнаружено американским учёным-физиком Перси Спенсером в далёком 1942 году. В результате, спустя три года, учёный получил патент на применение излучения в процессе приготовления пищи. Уже через пару лет в военных госпиталях и столовых появилось устройство весом более 300 кг, являющееся прототипом современной микроволновки. За несколько десятилетий прибор существенно изменился. В него была встроена микропроцессорная система управления, появился вращающийся стол. Современные модели имеют возможность соединения с интернетом.

Несмотря на все модернизации и видоизменения, главным достоинством микроволновой печи была и остаётся скорость разогрева и приготовления пищи. Эта скорость обеспечивается благодаря тепловому воздействию микроволн не только на поверхность, а на весь объём продукта.

Устройство и принцип работы микроволновки

Устройство микроволновой печи нельзя назвать чересчур сложным. Её конструкция состоит из:

Равномерный разогрев пищи в печи обеспечивается за счёт вращения специального столика. Встроенный внутрь вентилятор помогает избежать перегрева в процессе работы, электронные схемы делают управление микроволновкой максимально удобным и безопасным.

Разогрев продуктов, помещённых в металлическую камеру, происходит за счёт воздействия на них мощных лучей частотой 2450 МГц. Проникая внутрь на глубину порядка 3 см, эти лучи приводят в движение полярные молекулы, в большом количестве присутствующие во всех продуктах питания. В результате интенсивного движения молекул пища быстро разогревается.

Во время работы микроволновки температура внутри камеры достигает очень больших значений , поэтому в конструкции предусмотрен специальный элемент, предохраняющий прибор от перегрева - термопредохранитель (термореле). Основной деталью термореле является биметаллическая пластина, способная изменять форму под влиянием температуры.

Когда уровень нагрева достигает предельных значений, пластина меняет форму и заставляет действовать толкатель, который размыкает соединение пластин контактной группы и останавливает работу СВЧ-печи. По мере снижения температуры пластина регулятора возвращается в первоначальное положение, контакты замыкаются, устройство снова начинает свою работу.

Помимо бытового использования, печи, работающие на основе СВЧ-излучения, нашли применение в промышленности . Их используют для обработки стройматериалов, размягчения горных пород, рекультивации нефти и др.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ УКРАИНЫ

НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УКРАИНЫ (КПИ)

Факультет военной подготовки

Реферат

по дисциплине

«Основы построения и устройства ЗРК»

«Понятие об СВЧ диапазоне радиоволн.

Особенности их распространения»

Введение

Понятие радиолокации включает в себя процесс обнаружения и определения местоположения различных объектов в пространстве с использованием явления отражения радиоволн от этих объектов.

В связи с этим характеристики используемых радиоволн и особенности их распространения в различных условиях имеют первостепенное значение для достижения требуемого результата.

Электромагнитные колебания сверхвысокой частоты (СВЧ колебания), представляют для нас особый интерес, так как соответствующий им диапазон УКВ имеет определенные преимущества по сравнению с волнами других диапазонов.

1. Понятие об СВЧ радиоволнах

В радиолокации используются электромагнитные колебания сверхвысокой частоты, которым соответствует диапазон УКВ. В следующей таблице приведено принятое деление диапазона УКВ:

Применение диапазонов УКВ объясняется преимуществами, свойственными радиоволнам этого диапазона по сравнению с волнами других диапазонов.

Радиоволны УКВ диапазона хорошо отражаются от предметов, встречающихся на пути их распространения. Это позволяет получать интенсивные сигналы, отраженные от целей, облученных радиолокационной станцией. В диапазоне УКВ легче получить остронаправленный радиолуч, необходимый для измерения угловых координат цели. В этом диапазоне наблюдается значительно меньше индустриальных помех.

Первые радиолокационные станции работали в метровом диапазоне; они имели низкую разрешающую способность и невысокую точность определения угловых координат целей. В настоящее время в радиолокации практически применяют почти весь сантиметровый диапазон волн и начинают осваивать миллиметровый диапазон. В этих диапазонах радиолокационные станции имеют относительно малогабаритные антенны, отличающиеся остронаправленным действием и обладающие высокой разрешающей способностью, необходимой для повышения точности определения угловых координат объектов.

2. Особенности распространения СВЧ радиоволн

По аналогии со световыми волнами УКВ распространяются прямолинейно и огибают лишь предметы, имеющие геометрические размеры, соизмеримые с длиной волны. Огибание препятствий радиоволнами дифракция, сказывается тем сильнее, чем больше длина волны и чем меньше размеры препятствия. На границе двух сред происходит отражение радиоволн по закону оптики – угол падения равен углу отражения. Частичное преломление радиоволн также происходит по законам оптики. Крупные искусственные сооружения и горы, встречающиеся на пути радиоволн, а также сферическая форма земли препятствуют распространению радиоволн вдоль земли. Дальность радиолокационной станции обнаружения ограничивается обычно прямой видимостью между ее антенной и целью. Дальность прямой видимости (геометрической) может быть определена по формуле:

где h – высота подъема антенны РЛС над землей в метрах,

H – высота цели над землей в метрах.

Эта формула легко выводится из простых геометрических соотношений с учетом радиуса земного шара, равного 6400 км. На дальность действия радиолокационной станции обнаружения оказывают влияние многие причины. Распространение СВЧ волн в нижних слоях атмосферы зависит от влажности, температуры и атмосферного давления. Верхние слои атмосферы, где под влиянием солнца и космических лучей происходит ионизация газа (расщепление электрически нейтральных атомов), оказывают влияние на распространение только самых длинных волн диапазона УКВ. При распространении радиоволн в более плотных слоях атмосферы проявляется эффект преломления радиоволн из-за неоднородности слоев атмосферы. Плавное отклонение луча от прямолинейного пути его распространения называется рефракцией. Радиоволны, проникая в более плотные слои, уменьшают свою скорость и, наоборот, выходя из плотных слоев, увеличивают ее. В результате радиолуч отклоняется от прямолинейного участка либо выпуклостью вверх, огибая землю, либо выпуклостью вниз, удаляясь от земной поверхности. Дальность действия РЛС при этом соответственно либо возрастает, либо уменьшается.

Особый интерес представляет явление критической рефракции или сверхрефракции, когда кривизна луча равна или больше кривизны земного шара. При таком распространении радиоволн дальность их действия превосходит во много раз дальность прямой видимости. В технике этот случай распространения радиоволн называют волноводным. Наблюдения подтверждают возможность достаточно устойчивого приема УКВ на расстояниях, доходящих до 1000 км.

Как и для световых волн, для радиоволн характерно явление интерференции или взаимодействия фаз радиоволн, распространяющихся в пространстве. При взаимодействии радиоволн, имеющих одинаковые амплитуды, но находящихся в противофазе, результирующее поле будет равно нулю. Это явление оказывается вредным и вызывает мерцание отметок от целей на экране радиолокатора.

Большое влияние на распространение радиоволн короче 30 см в нижних слоях атмосферы оказывают гидрометеоры (дождь, туман, облака и т. д.). Затухание радиоволн в парах воды особенно сильно сказывается для сантиметрового диапазона. Затухание радиоволн в атмосфере может заметно уменьшать дальность действия при больших расстояниях. На малых расстояниях оно сказывается незначительно. На миллиметровых волнах поглощение сказывается на определенных длинах волн и обусловливается молекулярным строением входящих в атмосферу газов. Затухание в атмосфере требуется учитывать для волн короче 10 см, так как на этих волнах дальность действия РЛС заметно уменьшается при наличии тумана, облаков и дождя. Так, сильный дождь вызывает затухание 0,3 – 0,4 дб/км для радиоволн длиной 3 – 5 см.

Заключение.

Достижения науки и техники в области создания мощных генераторов волн диапазона УКВ (соответственно СВЧ волн) позволяют сейчас создавать импульсные передатчики, обеспечивающие необходимую форму и минимальную длительность генерируемых импульсов.

Широкое применение СВЧ волн в радиолокации объясняется преимуществами радиоволн этого диапазона.

Литература

1. Ермолаев Г.И., Основы радиолокации и радиолокационное оборудование летательных аппаратов. - М.: Машиностроение, 1967.

2. Бакулев П.А., Радиолокация движущихся целей. – М.: Советское Радио, 1964.

3. Сайбель А.Г., Основы радиолокации. – М.: Советское Радио, 1961.

Диапазон радиоизлучения противоположен гамма-излучению и тоже неограничен с одной стороны - со стороны длинных волн и низких частот.

Инженеры делят его на множество участков. Самые короткие радиоволны используют для беспроводной передачи данных (интернет, сотовая и спутниковая телефония); метровые, дециметровые и ультракороткие волны (УКВ) занимают местные теле- и радиостанции; короткие волны (КВ) служат для глобальной радиосвязи - они отражаются от ионосферы и могут огибать Землю; средние и длинные волны используют для регионального радиовещания. Сверхдлинные волны (СДВ) - от 1 км до тысяч километров - проникают сквозь соленую воду и применяются для связи с подводными лодками, а также для поиска полезных ископаемых.

Энергия радиоволн крайне низка, но они возбуждают слабые колебания электронов в металлической антенне. Эти колебания затем усиливаются и регистрируются.

Атмосфера пропускает радиоволны длиной от 1 мм до 30 м. Они позволяют наблюдать ядра галактик, нейтронные звезды, другие планетные системы, но самое впечатляющее достижение радиоастрономии - рекордно детальные изображения космических источников, разрешение которых превосходит десятитысячную долю угловой секунды.

Микроволны

Микроволны - это поддиапазон радиоизлучения, примыкающий к инфракрасному. Его также называют сверхвысокочастотным (СВЧ) излучением, так как у него самая большая частота в радиодиапазоне.

Микроволновый диапазон интересен астрономам, поскольку в нем регистрируется оставшееся со времен Большого взрыва реликтовое излучение (другое название - микроволновый космический фон). Оно было испущено 13,7 млрд лет назад, когда горячее вещество Вселенной стало прозрачным для собственного теплового излучения. По мере расширения Вселенной реликтовое излучение остыло и сегодня его температура составляет 2,7 К.

Реликтовое излучение приходит на Землю со всех направлений. Сегодня астрофизиков интересуют неоднородности свечения неба в микроволновом диапазоне. По ним определяют, как в ранней Вселенной начинали формироваться скопления галактик, чтобы проверить правильность космологических теорий.

А на Земле микроволны используются для таких прозаических задач, как разогрев завтрака и разговоры по мобильному телефону.

Атмосфера прозрачна для микроволн. Их можно использовать для связи со спутниками. Есть также проекты передачи энергии на расстояние с помощью СВЧ-пучков.

Источники

Обзоры неба

Небо в микроволновом диапазоне 1,9 мм (WMAP)

Космический микроволновый фон, называемый также реликтовым излучением, представляет собой остывшее свечение горячей Вселенной . Впервые оно было обнаружено А. Пензиасом и Р. Вильсоном в 1965 году (Нобелевская премия 1978 г.) Первые измерения показали, что излучение совершенно однородно по всему небу.

В 1992 году было объявлено об открытии анизотропии (неоднородности) реликтового излучения. Этот результат был получен советским спутником «Реликт-1» и подтвержден американским спутником COBE (см. Небо в инфракрасном диапазоне). COBE также определил, что спектр реликтового излучения очень близок к чернотельному . За этот результат присуждена Нобелевская премия 2006 года.

Вариации яркости реликтового излучения по небу не превышают одной сотой доли процента, но их наличие указывает на едва заметные неоднородности в распределении вещества, которые существовали на ранней стадии эволюции Вселенной и послужили зародышами галактик и их скоплений.

Однако точности данных COBE и «Реликта» было недостаточно для проверки космологических моделей, и поэтому в 2001 году был запущен новый более точный аппарат WMAP (Wilkinson Microwave Anisotropy Probe), который к 2003 году построил детальную карту распределения интенсивности реликтового излучения по небесной сфере. На основе этих данных сейчас ведется уточнение космологических моделей и представлений об эволюции галактик.

Реликтовое излучение возникло, когда возраст Вселенной составлял около 400 тысяч лет и она вследствие расширения и остывания стала прозрачна для собственного теплового излучения. Первоначально излучение имело планковский (чернотельный) спектр с температурой около 3000 K и приходилось на ближний инфракрасный и видимый диапазоны спектра.

По мере расширения Вселенной реликтовое излучение испытывало красное смещение, что приводило к снижению его температуры. На сегодня температура реликтового излучения составляет 2,7 К и оно приходится на микроволновый и дальний инфракрасный (субмиллиметровый) диапазоны спектра. На графике показан приближенный вид планковского спектра для этой температуры. Впервые спектр реликтового излучения был измерен спутником COBE (см. Небо в инфракрасном диапазоне), за что в 2006 году была присуждена Нобелевская премия.

Радионебо на волне 21 см , 1420 МГц (Dickey & Lockman)

Знаменитая спектральная линия с длиной волны 21,1 см - это еще один способ наблюдения нейтрального атомарного водорода в космосе. Линия возникает благодаря так называемому сверхтонкому расщеплению основного энергетического уровня атома водорода.

Энергия невозбужденного атома водорода зависит от взаимной ориентации спинов протона и электрона. Если они параллельны, энергия чуть выше. Такие атомы могут спонтанно переходить в состояние с антипараллельными спинами, испуская квант радиоизлучения, уносящий крохотный избыток энергии. С отдельным атомом такое случается в среднем раз в 11 млн лет. Но огромное распространение водорода во Вселенной делает возможным наблюдение газовых облаков на этой частоте.

Радионебо на волне 73,5 см , 408 МГц (Бонн)

Это самый длинноволновый из всех обзоров неба. Он был выполнен на волне, на которой в Галактике наблюдается значительное число источников. Кроме того, выбор длины волны определялся техническими причинами. Для построения обзора использовался один из крупнейших в мире полноповоротных радиотелескопов - 100-метровый боннский радиотелескоп.

Земное применение

Главное преимущество микроволновой печи - прогрев со временем продуктов по всему объему, а не только с поверхности.

Микроволновое излучение, имея большую длину волны, глубже инфракрасного проникает под поверхность продуктов. Внутри продуктов электромагнитные колебания возбуждают вращательные уровни молекул воды, движение которых в основном и вызывает нагрев пищи. Таким образом происходит микроволновая (СВЧ) сушка продуктов, размораживание, приготовление и разогрев. Также переменные электрические токи возбуждают токи высокой частоты. Эти токи могут возникать в веществах, где присутствуют подвижные заряженные частицы.

А вот острые и тонкие металлические предметы в микроволновую печь помещать нельзя (это особенно касается посуды с напыленными металлическими украшениями под серебро и золото). Даже тонкое колечко позолоты по краю тарелки может вызвать мощный электрический разряд, который повредит устройство, создающее электромагнитную волну в печи (магнетрон, клистрон).

Принцип действия сотовой телефонии основан на использовании радиоканала (в микроволновом диапазоне) для связи между абонентом и одной из базовых станций. Между базовыми станциями информация передается, как правило, по цифровым кабельным сетям.

Радиус действия базовой станции - размер соты - от нескольких десятков до нескольких тысяч метров. Он зависит от ландшафта и от мощности сигнала, которую подбирают так, чтобы в одной соте было не слишком много активных абонентов.

В стандарте GSM одна базовая станция может обеспечивать не более 8 телефонных разговоров одновременно. На массовых мероприятиях и при стихийных бедствиях количество звонящих абонентов резко увеличивается, это перегружает базовые станции и приводит к перебоям с сотовой связью. На такие случаи у сотовых операторов есть мобильные базовые станции, которые могут быть оперативно доставлены в район большого скопления народа.

Много споров вызывает вопрос о возможном вреде микроволнового излучения сотовых телефонов. Во время разговора передатчик находится в непосредственной близости от головы человека. Многократно проводившиеся исследования пока не смогли достоверно зарегистрировать негативного воздействия радиоизлучения сотовых телефонов на здоровье. Хотя полностью исключить воздействие слабого микроволнового излучения на ткани организма нельзя, оснований для серьезного беспокойства нет.

Передача телевизионного изображения ведется на метровых и дециметровых волнах. Каждый кадр разбивается на строки, вдоль которых определенным образом меняется яркость.

Передатчик телевизионной станции постоянно выдает в эфир радиосигнал строго фиксированной частоты, она называется несущей частотой. Под нее подстраивается приемный контур телевизора - в нем на нужной частоте возникает резонанс, позволяющий уловить слабые электромагнитные колебания. Информация об изображении передается амплитудой колебаний: большая амплитуда - высокая яркость, низкая амплитуда - темный участок изображения. Этот принцип называется амплитудной модуляцией. Аналогичным образом передается звук радиостанциями (кроме FM-станций).

С переходом к цифровому телевидению правила кодирования изображения меняются, но сам принцип несущей частоты и ее модуляции сохраняется.

Параболическая антенна для приема сигнала с геостационарного спутника в микроволновом и УКВ-диапазонах. Принцип действия такой же, как у радиотелескопа , но тарелку не требуется делать подвижной. В момент монтажа ее направляют на спутник, который всегда остается на одном месте относительно земных сооружений.

Это достигается за счет вывода спутника на геостационарную орбиту высотой около 36 тыс. км над экватором Земли. Период обращения по этой орбите в точности равен периоду вращения Земли вокруг своей оси относительно звезд - 23 часа 56 минут 4 секунды. Размер тарелки зависит от мощности спутникового передатчика и его диаграммы направленности. У каждого спутника есть основной район обслуживания, где его сигналы принимаются тарелкой диаметром 50–100 см , и периферийная зона, где сигнал быстро слабеет и для его приема может потребоваться антенна до 2–3 м .

Среди огромного разнообразия электромагнитных волн, существующих в природе, весьма скромное место занимает микроволновое или сверхвысокочастотное излучение (СВЧ). Отыскать этот частотный диапазон можно между радиоволнами и инфракрасной частью спектра. Протяжённость его не особенно велика. Это волны длиной от 30 см до 1 мм.

Поговорим о его происхождении, свойствах и роли в сфере обитания человека, о том, как влияет этот «молчаливый невидимка» на человеческий организм.

Источники СВЧ-излучения

Существуют природные источники микроволнового излучения - Солнце и другие космические объекты. На фоне их излучения и происходило формирование и развитие человеческой цивилизации.

Но в наш, насыщенный всевозможными техническими достижениями век, к естественному фону присовокупились ещё и рукотворные источники:

  • радиолокационные и радионавигационные установки;
  • системы спутникового телевидения;
  • сотовые телефоны и микроволновые печи.

Как микроволновое излучение влияет на здоровье человека

Результаты исследования влияния микроволнового излучения на человека позволили установить, что СВЧ лучи не обладают ионизирующим действием. Ионизированные молекулы - это дефектные частички вещества, приводящие к мутации хромосом. В результате живые клетки могут приобрести новые (дефектные) признаки. Этот вывод не означает, что микроволновое излучение не оказывает вред на человека.

Изучение влияния СВЧ-лучей на человека, позволило установить следующую картину - при их попадании на облучаемую поверхность, происходит частичное поглощение поступающей энергии тканями человека. В результате в них возбуждаются высокочастотные токи, нагревающие организм.

Как реакция механизма терморегуляции, следует усиление циркуляции крови. Если облучение было локальным, возможен быстрый отвод тепла от разогретых участков. При общем облучении такой возможности нет, поэтому оно является более опасным.

Поскольку циркуляция крови выполняет роль охлаждающего фактора, то в органах, обеднённых кровеносными сосудами, тепловой эффект выражен наиболее ярко. В первую очередь - в хрусталике глаза, вызывая его помутнение и разрушение. К сожалению, эти изменения необратимы.

Наиболее значительной поглощательной способностью отличаются ткани с большим содержанием жидкого компонента: крови, лимфы, слизистой желудка, кишечника, хрусталика глаза.

В результате могут наблюдаться:

  • изменения в крови и щитовидной железе;
  • снижение эффективности адаптационных и обменных процессов;
  • изменения в психической сфере, которые могут привести к депрессивным состояниям, а у людей с неустойчивой психикой - спровоцировать склонность к суициду.

Микроволновое излучение обладает кумулятивным эффектом. Если в первое время его воздействие проходит бессимптомно, то постепенно начинают формироваться патологические состояния. Вначале они проявляются в учащении головных болей, быстрой утомляемости, нарушениях сна, повышении артериального давления, сердечных болях.

При длительном и регулярном воздействии СВЧ излучение приводит к глубинным изменениям, перечисленным ранее. То есть, можно утверждать, что СВЧ излучение оказывает негативное влияние на здоровье человека. Причём отмечена возрастная чувствительность к микроволнам - молодые организмы оказались более подверженными влиянию СВЧ ЭМП (электромагнитного поля).

Средства защиты от СВЧ-излучения

Характер воздействия СВЧ излучения на человека зависит от следующих факторов:

  • удалённости от источника излучения и его интенсивности;
  • продолжительности облучения;
  • длины волны;
  • вида излучения (непрерывное или импульсное);
  • внешних условий;
  • состояния организма.

Для количественной оценки опасности введено понятие плотности излучения и допустимой нормы облучения. В нашей стране этот стандарт взят с десятикратным «запасом прочности» и равен 10 микроватт на сантиметр (10 мкВт/см). Это означает, что мощность потока СВЧ энергии, на рабочем месте человека не должна превышать 10 мкВт на каждый сантиметр поверхности.

Как же быть? Сам собой напрашивается вывод, что следует всячески избегать воздействия микроволновых лучей. Уменьшить воздействие СВЧ-излучения в сфере быта достаточно просто: следует ограничить время контакта с бытовыми его источниками.

Совершенно иной механизм защиты должен быть у людей, чья профессиональная деятельность связана с воздействием СВЧ радиоволн. Средства защиты от СВЧ-излучения подразделяются на общие и индивидуальные.

Поток излучаемой энергии убывает обратно пропорционально увеличению квадрата расстояния между излучателем и облучаемой поверхностью. Поэтому важнейшей коллективной защитной мерой является увеличение расстояния до источника излучения.

Другими действенными мерами по защите от СВЧ-излучения являются следующие:

Большая часть из них базируется на основных свойствах микроволнового излучения - отражении и поглощении веществом облучаемой поверхности. Поэтому защитные экраны подразделяются на отражающие и поглощающие.

Отражательные экраны выполняются из листового металла, металлической сетки и металлизированной ткани. Арсенал защитных экранов достаточно разнообразен. Это листовые экраны из однородного металла и многослойные пакеты, включающие слои изоляционных и поглощающих материалов (шунгита, углеродистых соединение) и т. д.

Конечным звеном в этой цепи являются средства индивидуальной защиты от СВЧ-излучения. Они включают спецодежду, выполненную из металлизированной ткани (халаты и фартуки, перчатки, накидки с капюшонами и вмонтированными в них очками). Очки покрыты тончайшим слоем металла, отражающего излучение. Их ношение обязательно при облучении в 1 мкВт/см.

Ношение спецодежды снижает уровень облучения в 100–1000 раз.

Польза микроволнового излучения

Вся предыдущая информация c негативной направленностью, имеет своей целью упредить нашего читателя от, исходящей от СВЧ-излучения, опасности. Однако среди специфических действий микроволновых лучей встречается термин стимуляция, то есть улучшение под их влиянием общего состояния организма или чувствительности его органов. То есть воздействие СВЧ-излучения на человека может быть и полезным. Терапевтическое свойство микроволнового излучения основано на его биологическом действии при физиотерапии.

Излучения, исходящие от специализированного медицинского генератора, проникает в организм человека на заданную глубину, вызывая прогревание тканей и целую систему полезных реакций. Сеансы СВЧ-процедур оказывают болеутоляющее и противозудное действие.

Их с успехом используют для лечения фронтита и гайморита, невралгии тройничного нерва.

Для воздействия на эндокринные органы, органы дыхания, почки, и лечения гинекологических заболеваний используют микроволновое излучение с большей проникающей способностью.

Исследование влияния СВЧ-излучения на организм человека начались несколько десятилетий назад. Накопленных знаний достаточно, чтобы быть уверенными в безвредности естественного фона этих излучений для человека.

Разнообразные генераторы этих частот, создают дополнительную дозу воздействия. Однако, их доля очень мала, а, используемая защита достаточно надёжна. Поэтому фобии об их огромном вреде не более чем миф, если соблюдаются все условия эксплуатации и защиты от промышленных и бытовых источников микроволновых излучателей.

 

 

Это интересно: