→ Экспериментально доказано, что в древнем египте было электричество. Экспериментально доказано, что химическая формула крахмала C - Документ Экспериментально было доказано что

Экспериментально доказано, что в древнем египте было электричество. Экспериментально доказано, что химическая формула крахмала C - Документ Экспериментально было доказано что

Путем кропотливых экспериментов с искусственно сформированными сообществами растений-однолетников ученым впервые удалось получить прямые доказательства того, что расхождение разных видов растений по разным экологическим нишам - это реально действующий механизм поддержания высокого видового разнообразия сообществ.

В последнее время на страницах ведущих научных журналов идут жаркие споры о том, должны ли виды, обитающие в одном месте (и при этом конкурирующие за одни и те же ресурсы), занимать разные экологические ниши. Согласно традиционным воззрениям (принципу конкурентного исключения Гаузе), расхождение видов по разным экологическим нишам - обязательное условие их сосуществования. Однако экологи, изучающие растительные сообщества, не раз обращали внимание на то, что для растений возможности расхождения видов по разным нишам в принципе довольно ограничены. Число совместно произрастающих видов в реальности может во много раз превышать число факторов, лимитирующих рост популяций отдельных видов («измерений ниши»).

Особенно впечатляет разнообразие деревьев во влажных тропических лесах, где на одном гектаре может произрастать более сотни разных видов, хотя все они конкурируют за одни и те же ресурсы, прежде всего за свет. Неудивительно, что изучение именно таких лесов заставило американского эколога Стивена Хаббела (Stephen Hubbell) выдвинуть концепцию нейтрализма, согласно которой разные виды растений могут сосуществовать благодаря не расхождению своих ниш, а наоборот - благодаря их сходству. Если согласно нишевой концепции при возрастании численности популяции какого-либо вида относительно других видов его удельная (в расчете на особь) скорость популяционного роста должна снижаться, то нейтралистская модель предполагает, что эта скорость остается неизменной (см. два нижних графика на рис. 1).

Подтвердить гипотезу нейтрализма (как, впрочем, и противоположную ей гипотезу обязательного расхождения видов по нишам) путем прямых экспериментов довольно сложно. Поэтому обычно исследователи ищут косвенные пути проверки. Например, строят математические модели, исходящие из тех или иных предположений об особенностях видов, а затем сравнивают прогнозируемое моделью соотношение численностей разных видов в сообществе с тем, которое реально наблюдается в природе (см: В поисках универсального закона устройства биологических сообществ, или Почему экологи потерпели неудачу?).

Однако недавно два исследователя из Отдела экологии, эволюции и морской биологии университета в Санта-Барбаре (Department of Ecology, Evolution, and Marine Biology, University of California , Santa Barbara, California) Джонатан Левин (Jonathan M. Levine) и его бывшая аспирантка Дженнике Хилрисламберс (Janneke Hille Ris Lambers) предприняли смелую попытку экспериментальным путем проверить гипотезу, согласно которой высокое видовое разнообразие сообществ поддерживается за счет расхождения видов по разным нишам.

Объектом их исследований стали искусственно формируемые сообщества из мелких растений-однолетников, развивающихся на так называемые серпентиновых почвах (содержащих труднорастворимые, медленно разрушающиеся силикаты магния, см.: Serpentine soil). Поскольку район исследований - около Санта-Барбары, Калифорния - характеризовался средиземноморским климатом с сухим жарким летом и мягкой влажной зимой, семена растений-однолетников, находящиеся в почве, начинали прорастать в конце осени - начале зимы, а выросшие из них растения сами давали семена весной или в начале лета. Растения эти небольшого размера - на площади 1 м 2 их может произрастать около 2,5 тысяч, а разнообразие при этом довольно высокое - на участке 25 × 25 см 2 можно насчитать более десятка видов.

Самым трудным в данной работе было свести к возможному минимуму влияние расхождения видов по разным нишам. Авторам пришлось комбинировать эксперименты и математическую модель роста однолетников, причем параметры модели определяли исходя из прямых наблюдений за посевами однолетников в течение двух вегетационных сезонов: 2006–2007 г. и 2007–2008 г. (второй год был более влажным). Всего было отобрано 10 разных видов (представителей разных семейств), обычных для данной местности. Их высевали на специальных делянках, так чтобы суммарная масса всех семян составляла 15 г на 1 м 2 . Исходно брали равные по весу количества семян всех видов, то есть создавали условия искусственно высокого разнообразия. В вариантах, где предполагалось отсутствие расхождения видов по нишам, всходы пропалывали (снижали плотность популяций), а на следующий год высевали семена разных растений в пропорциях, соответствующих тем, что были получены в предыдущий год.

Оцененные для всех видов скорости популяционного роста различались в этом случае очень сильно - на порядки величин, что неизбежно должно приводить к быстрому конкурентному исключению одних видов другими. Так, согласно расчетам, шалфей Salvia columbariae через 20 лет должен стать абсолютным доминантом, на долю которого будет приходиться более 99% от общей численности всех растений. Общее видовое разнообразие сообществ, в которых специально ослабляли эффект разделения ниш, было существенно ниже, чем в контрольных вариантах.

Очень важный результат исследования - экспериментальное подтверждение того, что удельная скорость популяционного роста вида возрастала в тех случаях, когда его относительное обилие снижалось. Таким образом, была реально продемонстрирована ситуация, при которой каждый вид при увеличении его популяционной плотности начинает ограничивать рост собственной популяции в большей степени, чем рост конкурентов.

Недавно китайским физикам удалось экспериментально доказать постулат Специальной теории относительности, который гласит о том, что ничто в нашей Вселенной не может двигаться быстрее скорости света. Это произошло больше чем через сто лет после его опубликования. Однако их открытие показывает, что путешествия во времени невозможны в принципе.

Начнем издалека — еще в 1632 году известный итальянский ученый Галилео Галилей в книге "Диалоги о двух главнейших системах мира — птолемеевой и коперниковой" сформулировал так называемый принцип относительности, который гласил, что все системы пребывают в постоянном движении относительно друг друга. Этот принцип опровергал куда более древнее утверждение Аристотеля о том, что естественным для любой системы является именно состояние покоя, а движется она лишь под воздействием внешних факторов. Галилей же впервые в истории науки предположил, что естественным состоянием, наоборот, является движение. Позже, через несколько веков, из этого принципа выросла целая теория, которую сейчас называют Специальной теорией относительности (СТО).

Многие неспециалисты до сих пор убеждены, что автором этой теории является Альберт Эйнштейн. На самом деле, это не так — СТО разрабатывалась на протяжении нескольких лет разными учеными, среди которых были и Хендрик Лоренц, и Анри Пуанкаре, и Макс Планк, и Герман Минковский. Альберт Эйнштейн же обогатил данную теорию в 1904 году двумя важными постулатами, один из которых говорил о том, что "каждый луч света движется в покоящейся системе координат с определенной скоростью V независимо от того, испускается ли этот луч света покоящимся или движущимся телом" (хотя и эта идея, строго говоря, принадлежала не ему, впервые это предположил Пуанкаре в 1898 году).

Однако после вклада Эйнштейна СТО приняла свой законченный вид, так что, возможно, именно поэтому многие считают создателем данной теории именно его (а, возможно, еще и из-за того, что позже Эйнштейн создал Общую теорию относительности (ОТО), которую часто путают со Специальной). Однако, тем не менее, можно смело утверждать, что постулат о постоянстве и независимости скорости света стал краеугольным камнем СТО, из которой потом выросла практически вся современная физика.

Несколько позже, во время работы над ОТО, Эйнштейн, взяв за основу постулат о скорости света, предположил, что ничто во Вселенной не может двигаться быстрее света, проходящего сквозь вакуум. Потом данное утверждение вошло во все учебники и многие поколения студентов и школьников заучивали это правило наизусть, в большинстве случаев и не подозревая, что имеют дело не с доказанным постулатом, а… с гипотезой.

Дело в том, что это положение долгое время не имело никаких экспериментальных доказательств, а опиралось лишь на расчеты великого физика (хотя сам Эйнштейн, собственно говоря, и не собирался его доказывать экспериментально, поскольку он, как мы помним, был физиком-теоретиком). И если впоследствии все другие положения как СТО, так и ОТО получили экспериментальные доказательства, то данное утверждение так и осталось гипотезой. Спору нет, попытки перевести его в разряд "доказанных теорем" предпринимались неоднократно, однако попытки физиков так и не увенчались успехом. Причина тому — большая техническая сложность, возникающая при постановке эксперимента.

Кроме того, на протяжении всего ХХ века поступали данные о том, что отдельные носители электромагнитных колебаний, называемых световыми волнами, или, как их еще называют, фотоны, могут превышать скорость света в вакууме, которая, как мы помним, равна 300 тысячам километров в секунду. Правда, это также были не столько экспериментальные данные, сколько теоретические выкладки — те, кто их высказывали, опирались на давно известный факт, говорящий о том, что свет распространяется с различной скоростью в разных физических средах. Эксперименты же показывали, что в некоторых средах (например, в кристаллах), скорость отдельных фотонов может превышать общую скорость светового пучка.

Итак, с постулатом о постоянстве и независимости скорости света сложилась весьма курьезная ситуация — его невозможно было ни доказать (экспериментально), ни опровергнуть. Для науки подобное недопустимо — как мы знаем, этот раздел человеческого знания, в отличие, например, от религиозного мировоззрения, не имеет дела с утверждениями, которые принципиально неопровержимы (и недоказуемы). Однако, поскольку никто не мог предложить ничего лучшего, то более ста лет с этим положением дел приходилось мириться.

И вот недавно, наконец-то, постулат о постоянстве и независимости скорости света удалось экспериментально доказать. Сделала это группа физиков под руководством профессора Ду Шэн Вана из Гонконгского университета науки и технологий. Ученые поставили эксперимент, в котором они пропускали отдельные фотоны через пары из атомов с температурой, близкой к абсолютному нулю.

Согласно результатам, скорость прохождения фотонов через эту среду, весьма близкую к модельному вакууму, была значительно меньше тех самых 300 тысяч километров в секунду. Кроме того, исследователи измерили скорость не только самих фотонов, но и так называемых оптических предшественников. Напомню, что таковыми считаются волны, которые создают перед собой фотоны при движении в данной среде. До сих пор скорость их распространения еще никому не удавалось измерить. Однако физики из Гонконга впервые справились с этой весьма нелегкой задачей.

Выяснилось, что даже скорость распространения тех самых оптических предшественников значительно ниже скорости света в вакууме. Это говорит о том, что действительно превысить скорость света в вакууме не одно из веществ и волн нашей Вселенной не в состоянии. Таким образом, основной постулат СТО получил весомые экспериментальные доказательства.

Однако из этой работы следует еще один интересный вывод — информация, соответственно, тоже не может распространяться быстрее скорости света (поскольку ее носители не могут этого делать). Следовательно, никакая машина времени, которая, по идее, должна работать, используя данный принцип, невозможна. Доктор Ду Шэн Ван заявил, что их открытие окончательно похоронило надежды людей на возможность межвременных путешествий.

Двое монахов спорили о флаге, один говорил: «Движется флаг», другой: «Движется ветер». Мимо шёл шестой патриарх. Он сказал: «Ни флаг, ни ветер – движется ум».

Некоторые представители человеческой цивилизации давно уже сомневаются в существовании объективной реальности. Весь мир – иллюзия – это один из главных постулатов буддизма. Некоторые более современные европейские философы, возможно под влиянием восточного учения, тоже двинули свою мысль в этом направлении. Дошло и до серьёзных учёных физиков. Ещё в 1978 году американский физик-теоретик Джон Уилер предложил эксперимент, доказывающий, что никакой реальности не существует до тех пор, пока мы ее не измерим. Для этого он предлагал использовать лучи света, отраженные зеркалами. В те времена технологии не позволяли провести такой эксперимент, и только 40 лет спустя группа учёных из Национального университета Австралии смогла реализовать идею Уилера, используя атомы гелия, взаимодействующие с лазерными лучами.

Для этого они заключили атомы в состояние «конденсата Бозе-Эйнштейна», которое позволяет наблюдать квантовые эффекты на макроскопическом уровне, а затем удалили все атомы кроме одного. Этот единственный атом пропустили между двумя лазерными лучами, которые выступали в той же роли, в которой мелкая сетка выступает для лучей света — в роли неравномерной решётки. Затем на пути атома была добавлена вторая такая «сетка».

Это привело к искажению пути атома, он отправился по обоим возможным путям так, как это сделала бы волна. Иными словами, атом проходил двумя разными путями. Зато при повторном эксперименте, когда вторую «сетку» убрали, атом выбирал лишь один возможный путь. По мнению исследователей, тот факт, что вторая «сетка» была добавлена уже после того, как атом пересекал первое «распутье», предполагает, что атом, образно говоря, так и не определился со своей природой до того, как подвергся наблюдению (или измерению) во второй раз.

Согласно общей логике, объект должен быть либо частицей, либо волной по своему происхождению, а следовательно не имеет значения, кто и когда проводит измерения либо наблюдения за объектом, поскольку его природа от этого не изменится. Но согласно квантовой теории, это не так. Она предполагает, что результат зависит от того, как объект измеряли в конце его пути.

«Предсказания квантовой физики относительно взаимодействия объектов могут казаться странными, когда речь идет о свете, который ведет себя как волна», — поясняет Роман Хакимов, сотрудник Австралийского национального университета, принимавший участие в исследовании, а эксперименты с атомами, которые имеют массу и взаимодействуют с электрическими полями, делает картину ещё более невероятной».

«Проще говоря, если принять тот факт, что атом выбирал определенный путь на первом распутье, эксперимент доказывает, что будущие измерения могут оказывать влияние на прошлое атома», — добавляет руководитель исследования Энди Траскотт.

«Атом не совершал путь между условными точками А и B, — комментирует он. — Только после измерений в конечной точке наблюдения, становилось понятно повел ли себя атом как волна, разделяясь по двум направлениям, или как частица, выбирая одно».

Несмотря на то, что все это звучит дико для непосвященного человека, авторы исследования говорят, что эксперимент является подтверждением квантовой теории. По крайней мере, в мельчайших масштабах.

Эта теория уже позволила создать ряд вполне работоспособных технологий в области лазеров и компьютерных процессоров, но до сих пор таких ярких экспериментов, подтверждающих её, не было. Траскотт и Хакимов в сущности нашли подтверждение тому, что реальность не существует, пока мы её не наблюдаем. Это один из основополагающих тезисов квантовой теории. Именно его невероятность с точки зрения обывателя, для которого дождь не перестает идти, даже если ты закроешь глаза, чтобы его не видеть, делают квантовую теорию «оторванной от реальности». До сих пор не было найдено никаких доказательств того, что этот принцип действует в реальности. В то же время мысленный эксперимент Уилера, равно как и подтверждающий его практический эксперимент Траскотта, пока относятся лишь к квантовому уровню.

Крахмал.

Экспериментально доказано, что химическая формула крахмала (C 6 H 10 O 5)n, где n достигает нескольких тысяч. Учёным удалось доказать, что макромолекулы крахмала состоят из остатков глюкозы, так как именно она является продуктом гидролиза крахмала. Кроме того установлено, что крахмал состоит из молекул с разветвлённой структурой. Этим объясняется зернистое строение крахмала. Крахмал состоит из длинных сложных цепочек простых сахаров. Именно поэтому его часто называют "сложным углеводом".

Какие продукты содержат много крахмала? Зерно (пшеница, рис, ячмень, овес), картофель, кукуруза, фасоль – это всё очень крахмалистые продукты. Из зерна делают хлеб, крупы и макаронные изделия, а также крекеры, печенье, торты, пироги, изготовляют муку.

Получение.

Крахмал получают чаще всего из картофеля. Для этого картофель измельчают, промывают водой и перекачивают в большие сосуды, где происходит отстаивание. Полученный крахмал ещё раз промывают водой, отстаивают и сушат в струе тёплого воздуха.

Физические свойства.

Крахмал – белый порошок, нерастворимый в холодной воде. В горячей воде он набухает и образует клейстер.

Химические свойства.

Характерной реакцией крахмала является его взаимодействие с йодом. Если к охлаждённому крахмальному клейстеру добавить раствор йода, то появляется синее окрашивание. При нагревании клейстера оно исчезает, а при охлаждении появляется вновь. Этим свойством пользуются при определении крахмала в пищевых продуктах. Так, например, если каплю йода поместить на срез картофеля или ломтик белого хлеба, то появляется синее окрашивание.

Крахмал сравнительно легко подвергается гидролизу:

(С 6 Н 10 О 5)n + nН 2 О = nС 6 Н 12 О 6

(крахмал + вода = глюкоза)

В зависимости от условий гидролиз крахмала может протекать ступенчато, с образованием различных промежуточных продуктов:

(С 6 Н 10 О 5)n → (С 6 Н 10 О 5)m → хС 12 Н 22 О 11 → nС 6 Н 12 О 6

(крахмал → декстрины → мальтоза → глюкоза).

Происходит постепенное расщепление макромолекул.

Применение.

Крахмал является ценным питательным продуктом. Чтобы облегчить его усвоение, содержащие крахмал продукты подвергают действию высокой температуры, то есть картофель варят, хлеб пекут. В этих условиях происходит частичный гидролиз крахмала, и образуются декстрины, растворимые в воде. Декстрины в пищеварительном тракте подвергаются дальнейшему гидролизу до глюкозы, которая усваивается организмом. Избыток глюкозы превращается в гликоген (животный крахмал). Состав гликогена такой же, как у крахмала - (C 6 H 10 O 5)n, но его молекулы более разветвлённые. Особенно много гликогена содержится в печени (до 10 %). В организме гликоген является резервным веществом, которое превращается в глюкозу по мере его расходования в клетках.

В промышленности крахмал путём гидролиза превращают в патоку и глюкозу. Для этого его нагревают с разбавленной серной кислотой, избыток которой затем нейтрализуют мелом. Образовавшийся осадок отфильтровывают, раствор упаривают и выделяют глюкозу. Если гидролиз крахмала не доводить до конца, то образуется смесь декстринов с глюкозой – патока, которую применяют в кондитерской промышленности. Получаемые из крахмала декстрины используются в качестве клея, для загустения красок при нанесении рисунков на ткань.

Крахмал применяется для накрахмаливания белья. Под горячим утюгом происходит частичный гидролиз крахмала и превращение его в декстрины. Последние образуют на ткани плотную плёнку, которая придаёт блеск ткани и предохраняет её от загрязнения.

Крахмал и питание.

Лучшие из крахмалистых продуктов цельные бобы или чечевица. Крахмал, содержащийся в них, переваривается медленно. Консервированные бобы более полно усваивается организмом, чем те, которые приготовлены из высушенного состояния. При выборе зерна, есть те, которые сохраняют свои свойства и при кулинарной обработке, такие как коричневый рис, ячмень, амарант, или лебеда.

Следует избегать хлебобулочных изделий и изделий, сделанных из муки. Лучший выбор сортов хлеба из муки специального низкого помола, которые содержат меньше крахмала и больше клетчатки.

Процесс гидролиза крахмала в организме человека сложный, но технологически обработанный крахмал уже на языке начинает свой ферментативный гидролиз, в результате которого образуется мальтоза. Мальтоза не успевает превратиться в моносахариды за то время, которое мы обычно тратим на пережёвывание, и процесс образования глюкозы из крахмала заканчивается уже в пищеварительном тракте. Однако, если содержащую крахмал пищу (например хлеб) пожевать минуту или полторы, появиться отчётливый сладкий вкус.

Наш организм получает крахмал в основном с картофелем, однако массовая доля этого углевода в клубнях картофеля не превышает 20 %. Гораздо богаче крахмалом зерновые культуры: рис – 80 %, кукуруза, пшеница – 74 %.

Крахмал является главным запасным питательным веществом. В растениях он образуется в результате процесса фотосинтеза из образовавшейся глюкозы.

Международная команда физиков из Университета Гуанчжоу в Китае и Института Вейцмана в Израиле, работающая во главе с Ульфом Леонхардтом (Ulf Leonhardt) впервые продемонстрировала толкающее давление света на жидкость. Результаты исследования и выводы из своей работы учёные изложили в статье , опубликованной в издании New Journal of Physics.

Дискуссия о природе давления или, как его ещё называют физики, импульса света, восходит к 1908 году. Тогда знаменитый немецкий учёный Герман Минковский выдвинул гипотезу о том, что свет воздействует на жидкости, такие как масло или вода, притягивая их на себя. Однако в 1909 году физик Макс Абрахам (Max Abraham) опроверг эту гипотезу и теоретически доказал, что свет оказывает толкающее давление на жидкости.

"Учёные спорили на протяжении столетия о природе импульса света и его воздействия на среду. Мы обнаружили, что импульс света не является основной физической величиной, но она проявляется во взаимодействии между светом и материей и зависит от способности света деформировать материю.

Если среда движется под воздействием пучка излучения, то прав Минковский, и свет оказывает тянущее давление. Если же среда неподвижна, то прав Абрахам, и свет оказывает толкающее давление на жидкости", — рассказывает Леонхардт.

Два различных типа давления могут быть идентифицированы экспериментально, путём освещения поверхности жидкости световым лучом. Необходимо только проследить за тем, как ведёт себя жидкость — поднимается или опускается. В первом случае окажется, что свет тянет жидкую среду на себя, а во втором — наоборот. Добавим, что обе теории согласуются в пустом пространстве (когда показатель преломления среды эквивалентен единице), но расходятся в том случае, если показатель преломления больше 1.

В своём эксперименте Леонхардт и его коллеги продемонстрировали, что поверхность жидкости можно заставить изогнуться внутрь, что будет соответствовать толкающему давлению света, и сделать это при помощи относительно широкого пучка излучения в относительно крупном контейнере. Эти два фактора заставляют свет формировать структуру потока в жидкости.

Исследователи показали, что толкающее давление света проявляется как в воде, так и в масле, которые имеют различные показатели преломления. Таким образом им удалось подтвердить теорию Абрахама.

Авторы нового исследования отмечают, что в предыдущих экспериментах их коллеги доказывали лишь правоту Минковского, демонстрируя тянущее давление света. Однако, по их словам, прежде учёные использовали более узкие световые лучи и небольшие контейнеры с жидкостью.

Леонхардт и его команда решили повторить свой эксперимент и, как только они использовали узкий луч и малый контейнер, проявилось тянущее давление света. Это означает, что характер давления зависит не только от света, но и от самой жидкости, поясняют исследователи.

Чтобы понять природу импульса света, Леонхардт предлагает провести аналогию с игрой в бильярд. По его словам, импульс света несколько отличается от него по энергии, и это различие имеет важные аспекты.

"Представьте себе игру в бильярд. Игрок берёт кий и ударяет по белому шару, который, в свою очередь, должен толкнуть шар цветной, а он может толкнуть ещё несколько шаров. Во всей этой цепочке толкающих движений передаётся импульс, изначально сообщённый игроком кию.

Свет также может толкать материю, хотя эти толчки будут микроскопическими, почти незаметными. В некоторых случаях, впрочем, толчки света могут быть очень значительными для среды. К примеру, вспомним хвосты комет.

Великий астроном Иоганн Кеплер предположил сотни лет назад, что хвост кометы — это материя, вытолкнутая с поверхности её ядра светом, поскольку он смотрит всегда в противоположную сторону от Солнца. Сегодня мы знаем, что Кеплер был отчасти прав, так как материя сталкивается солнечным ветром с ядра кометы и формируется хвост.

Так вот, импульсом мы называем способность света приводить материю в движение, и это понятие действительно тесно связано с энергией света, хотя и отличается от него", — поясняет Леонхардт.

Результаты данного исследования имеют как фундаментальное, так и практическое значение для науки. С точки зрения фундаментальных теорий, физики теперь лучше будут понимать природу света. Леонхардт и его коллеги ответили на вопрос о том, увеличивается или уменьшается импульс света с увеличением показателя преломления среды: результат зависит от способности свет привести в механическое движение жидкость, и если пучок света на это способен, то импульс уменьшается, а если нет — то увеличивается.

Что же касается практического значения нового исследования, то оно может пригодиться в развитии инновационной технологии инерциально удерживаемого термоядерного синтеза, которая подразумевает использование силы светового импульса для инициации ядерного синтеза.

Последняя работа также повлияет на оптические технологии в целом, в том числе и на развитие и .

 

 

Это интересно: