→ Аппараты низкого напряжения общие сведения. Определение и классификация электрических аппаратов

Аппараты низкого напряжения общие сведения. Определение и классификация электрических аппаратов

Раздел 2. Электрические аппараты низкого напряжения

Тема 2.1 Электрические аппараты ручного управления

1.Рубильники-назначение, устройство, особенности работы и конструкции, применение

2. Командоаппараты- классификация, назначение, устройство, особенности работы и конструкции, применение.

3.Резисторы и реостаты- назначение, устройство, особенности работы и конструкции, применение

Выбор рубильников, пакетных переключателей

Вопрос 1.Рубильники

Рубильник простейший аппарат ручного управления, который используется для коммутации электрических цепей при напряжении до 660 В переменного тока и 440 В постоянного тока и токах от 25 до 10000 А.

Условное обозначение рубильника на электрических схемах : -однополюсный

Трехполюсный

Рубильники рассчитаны для коммутации цепей и предназначены для создания видимого разрыва электрических цепей. Механический ресурс рубильников до 10000 операций.

Рубильники выполняются одно-, двух- и трехполюсными. Основными элементами их являются: неподвижные врубные контакты, подвижные контакты, закрепленные шарнирно в других неподвижных контактах. Монтируются рубильники на изоляционных деталях, плитах, каркасах. Конструкция рубильника может выполняться для присоединения проводов сзади или спереди.

Гашение дуги постоянного тока при малых токах до 75 А происходит за счет ее механического растягивания расходящимися ножами. При больших токах гашение осуществляется в основном за счет перемещения дуги под действием электродинамических сил контура тока (детали рубильника и др).

При монтаже рубильников в распределительных ящиках или закрытых РУ малого объема весьма актуальным становится ограничение размеров дуги. Необходимо чтобы оставшиеся после погасания дуги ионизированные газы не вызывали перекрытия на корпус или между токоведущими частями. В таких случаях рубильники снабжаются различного рода дугогасительными камерами.

Рис.2.1.Рубильник двухполюсный перекидной

Структурное обозначение рубильника:

Задание 1. а). Перечислите позиции рубильника на рисунке 2.2.

Вопрос 2. Командоаппараты

Кнопочные выключатели(кнопки) –электрические аппараты ручного управления, предназначенные для подачи оператором управляющего воздействия при управлении различными электромагнитными аппаратами (реле, пускателями, контакторами и др.), а также для коммутирования цепей управления, сигнализации, электрической блокировки цепей постоянного и переменного тока. Состоят из корпуса или основания, кнопок, замыкающего и размыкающего контактов. Несколько кнопок, установленных на общей панели или в общем корпусе называется кнопочным постом.

Кнопка СТОП , Кнопка ПУСК

Пример условного обозначения кнопочного поста КЕ

КЕ XXX ХХХХ:

КЕ - обозначение серии;

XX - исполнение по виду управляющего элемента и наличию специальных устройств: от 0,1 до 21;

X - количество контактных элементов: 1-1 или 2; 2 - 3 или 4;

XXX - климатическое исполнение по ГОСТ 15150-69: У, ХЛ, Т - для выключателей Каменец-Подольского элекромеханического завода; У, В - для выключателей завода пускорегулирующей аппаратуры "Реостат";

Устройство кнопочных выключателей (Рис.2.3.)

Рис.2.3.Устройство и условное обозначение кнопочных выключателей

Кнопки имеют неподвижные контакты 1 , контактный мостик с подвижными контактами 2 , пружину 3 , для возврата мостика.

а - кнопка с замыкающими контактами ("пуск" );
б - кнопка с размыкающими контактами ("стоп" ).

Задание 2. а). Ответьте на вопрос: из каких материалов изготавливаются контакты кнопочных выключателей

Пакетные выключатели и переключатели (рис 2.4)– электрические аппараты ручного управления, предназначенный для коммутации цепей управления и сигнализации в схемах пуска реверса электродвигателей, а также электрических цепей переменного тока напряжением 380 В и постоянного тока напряжением 220 В небольшой мощности под нагрузкой.

Рис.2.4.Общий вид пакетного выключателя

Условное обозначение любого переключателя:

В основном переключатели представляют собой следующую конструкцию: на одном валу собираются идентичные по конструкции коммутирующие пакеты (контакты), удерживающиеся в собранном положении механизмом фиксации. Поворот рукоятки переключателя приводит во вращение вал, а вместе с ним и кулачки коммутирующих устройств, которые замыкают или размыкают контакты.

Коммутирующее устройство имеет одну или две контактные системы, электрически изолированные или соединенные перемычкой в зависимости от электрической схемы и состоит из корпуса, неподвижных контактов, контактных мостиков, толкателей, кулачков, пружин.

Универсальные переключатели.(Рис.25.) Переключатели можно раз­делить на две группы: с поворотными подвижными контактами серии МК и ПМО и кулачковые УП5300, ПКУ.

Универсальные переключатели в нормальном исполнении выпускаются серии УП5300; водозащищенные - серии УП5400; взрывозащищенные - серии УП5800. Их различают по количе­ству секций, а также по фиксированным положениям и углу по­ворота рукоятки, ее форме и другим признакам.

Рис.2.5.Общий вид универсальных переключателей

В переключателях может быть 2, 4, 6, 8, 10, 12, 14, 16 сек­ций. В переключателях с количеством секций от 2 до 8 рукоятка фиксируется в каждом положении или используется рукоятка с самовозвратом в среднее положение.

Количество фиксированных положений и угол поворота ру­коятки обозначены соответствующей буквой в середине номенк­латурного обозначения переключателя. Буквы А, Б и В обозна­чают исполнение переключателя с самовозвратом в среднее поло­жение без фиксации. Причем буква А указывает на то, что рукоятка может поворачиваться на 45° вправо (по часовой стрел­ке) и влево (против часовой стрелки), Б - только 45° вправо, В - на 45° влево. Буквы Г, Д, Е и Ж обозначают, что исполнение переключателя с фиксацией в положениях через 90°. Причем бу­ква Г указывает на то, что рукоятка может поворачиваться впра­во на одно положение, Д - влево на одно положение, Е - на од­но положение влево и вправо, Ж - может находиться в левом или правом положении под углом 45° к середине (в среднем по­ложении рукоятка не фиксируется).

Буквы И, К, Л, М, Н, С, Ф, X показывают, что переключа­тель с фиксацией в положениях через 45°. Буква И указывает на то, что рукоятка может поворачиваться вправо на одно положе­ние, К - влево на одно положение, Л - вправо или влево на два положения, М - вправо или влево на три положения, Н - впра­во на восемь положений, С - вправо или влево на одно положе­ние, Ф - вправо на одно положение и влево на два положения, X - вправо на три положения и влево на два положения.

Рукоятка может иметь овальную и револьверную форму. Обычно переключатели, в которых до б секций включительно с круговым вращением (на восемь положений), имеют овальную рукоятку.

В обозначении каждого переключателя приведены сокра­щенное название, условный номер данной конструкции, номер, указывающий количество секций, тип фиксатора и номер диа­граммы переключателя по каталогу. Например, обозначение УП5314-Н20 расшифровывается так: У - - универсальный, П -переключатель, 5 - нерегулируемый командоаппарат, 3 - безре­ечная конструкция, 14 - количество секций, Н - тип фиксато­ра, 20 - номер диаграммы по каталогу.

Основной частью переключателя УП5300 являются стяну­тые шпильками рабочие секции. Через секции про­ходит валик, на одном конце которого находится пластмассовая рукоятка. Для закрепления переключателя на панели в его пе­редней стенке сделаны три выступа с отверстиями под установоч­ные винты. Коммутация электрических цепей осуществляется имеющимися контактами.

Малогабаритные переключатели предназначенные для установки на панелях щитов, могут быть использованы для дистанционного управления коммутаци­онными аппаратами, в цепях сигнализации, измерения и автома­тики переменного тока напряжением до 220 В и рассчитаны на номинальный ток 6 А.

Каждый переключатель имеет свою схему включения и диаграмму замыкания контактов.

Малогабаритные переключатели серии предназначены для установки на щитах управления. Они используются при дис­танционном управлении коммутационными аппаратами (реле, электромагнитными пускателями и контакторами) и в цепях сиг­нализации, измерения, автоматики при напряжении переменного и постоянного тока до 220 В. Контакты переключателей рассчи­таны на ток 3 А.

Переключатели состоят из 2, 4 и 6 контактных пакетов. Пакетные кулачковые универсальные переключатели ПКУ используют в схемах управления электродвигателями в ручном, полуавтоматическом и автоматическом режимах. Они рассчитаны на напряжение 220 В постоянного тока и 380 В пере­менного тока.

Переключатели серии ПКУ различают по способу установки и крепления, количеству пакетов, фиксированных положений и углу поворота рукоятки. Буквы и цифры, которые входят в обозначение пере­ключателя, например, ПКУ-3-12Л2020, означают: П-- переклю­чатель, К - кулачковый, У - уни­версальный, 3 - типоразмер, опре­деляемый током 10 А, 1 -- испол­нение по роду защиты (без защитной оболочки), 2 - исполнение по способу установки и крепления (установка за панелью щита с креплением за перед­нюю скобу с фронтальным кольцом), Л - фиксация положения через 45°, 2020 - номер схемы и диаграммы по каталогу.

Задание 2. б).Назовите позиции пакетного переключателя, изображенного на рисунке 2.6.

Рис.2.6.Пакетный переключатель

Тумблеры предназначены для ручной коммутации низковольтных электрических цепей малой мощности, не требующих частого переключения.

Рис. 2.7.Тумблер

Задание 2.в). Назовите приблизительные габаритные размеры тумблера.

Контроллер – коммутационное устройство, осуществляющее пуск и регулирование скорости электродвигателя. Многоцепный электрический аппарат с ручным или ножным приводом для непосредственной коммутации силовых цепей электродвигателей. По конструкции они подразделяются на кулачковые, барабанные, плоские и магнитные.

Контроллеры бывают трех типов: плоские, барабанные, кулачковые.

Плоские контроллеры могут выполняться на большее число ступеней по сравнению с барабанными и кулачковыми, но переключающая способность их меньше. Конструкция их выполняется по принципу переключающих устройств реостатов

Барабанные контроллеры применяются для управления двигателями мощностью до 75 КВт. Переключающая их способность невелика. Они допускают до 120-240 переключений в час.

Кулачковые контроллеры допускают до 600 переключений в час. Контактное устройство их работает аналогично контактному устройству контакторов, т.е. каждый коммутационный элемент имеет дугогасительную систему.

Задание 2. г). Назовите позиции контроллера рис.2.8.

Рис 2.8. Силовой контроллер

Рис.2.9. Виды резисторов

Резисторы на теплоемком каркасе выполняются в виде цилиндра или трубки из нагревостойкого материала (фарфор, шамот), на который намотана проволока с болшим удельным сопротивлением(константан, фехраль, чугун, сталь, нихром, ферронихром). Для улучшения теплоотдачи и предохранения проволоки от сползания резисторы покрываются сверху слоем эмали или стекла

Рамочные резисторы состоят из стальной пластины, на боковых ребрах которой укреплены фарфоровые или стеатитовые изоляторы, имеющие углубления, в которые укладывается проволока или лента сопротивления. Выводы ступеней выполняются в виде хомутиков или припаянных медных наконечников.

Резисторы чугунные литые и стальные штампованные выполняются зигзагообразной формы с ушками для крепления.

Реостат- это аппарат, состоящий из набора резисторов и устройства с помощью которого можно регулировать сопротивление включенных резисторов.

Условное графическое изображение реостата. Размеры прямоугольника 8х4.

В зависимости от назначения различают следующие виды реостатов :

Пусковые для пуска ЭД постоянного и переменного тока;

Пускорегулирующие для пуска и регулирования частоты вращения ЭД;

Реостаты возбуждения- для регулирования тока возбуждения в обмотках возбуждения электрических машин (рис.2.10.);

Рис.2.10. Конструктивная схема реостата возбуждения

Нагрузочные или баластные- для поглащения электроэнергии.

Задание 3. а) Попробуй, глядя на рисунок 2.11, выяснить для себя в какую сторону надо перемещать движок, чтобы:
а) увеличить сопротивление, включенное в цепь?
б) уменьшить сопротивление?

Рис.2.11

Задание 4. Проверка степени усвоения изученной информации по вопросам1,2,3

темы 2.1 «Электрические аппараты ручного управления»

а) назовите аппараты изображенные на рисунке 2.12.

Рис.2.12.

б)Перечислите элементы которые есть у всех коммутационных аппаратов ручного управления:

Таблица 2.1.Выбор рубильников, пакетных выключателей

Задание 5. Выбрать главный трехфазный рубильник, установленный в силовом щите с напряжением на входе 380 В. Мощность передаваемая цепью 20 кВт. Расчетное значение максимального тока к.з. равно 11,5 кА. Технические данные трехфазных рубильников представлены в таблице 2.2. Марку принятого рубильника расшифровать

Решение: 1.Определяем расчетное значение тока рубильника

2.Заполним таблицу 2.1 с учетом данных и таблицы 2.2. (продолжить самостоятельно)

Таблица 2.2.Технические данные рубильников

Тип рубильника Р-25 РПС-1(с предохранителем, боковой смещенный) РЦ-1(с центральной рукояткой) РБ
Номинальное напряжение, В
Номинальный ток, А 100,250,400,630 100,250, 400 100,250,400
Электродинамическая стойкость, кА 2,8 20,20,30,32 1,2; 3,0; 4,8 1,5; 2,5; 4,5
Термическая стойкость, кА 2 · с
исполнение однополюсные трехполюсные трехполюсные трехполюсные
Механическая износостойкость Не менее 2500 циклов ВО Не менее 2500 циклов ВО -

Задание 6. Тема «Аппараты ручного управления»

Выберите правильный ответ:

Задание на дом. Закончить выполнение заданий.

Вопрос 3.Контакторы

Рис.2.2.1.Разрез и схема фрикционной муфты

Принцип работы фрикционной муфты . Напряжение подается через контактные кольца на обмотку возбуждения, установленную на ведомом валу. Эта обмотка создает магнитный поток Ф, замыкающийся через якорь муфты. Возникающая электромагнитная сила перемещает якорь влево и через поверхности трения ведущая и ведомые части вала входят в зацепление. Когда снимается напряжение и исчезает магнитный поток, возвратная пружина перемещает якорь вправо и муфта выходит из зацепления. Поверхности трения (фрикционные диски) изготовляются из износоустойчивых материалов с большим коэффициентом трения. Могут использоваться обычные материалы: сталь по стали, сталь по чугуну, сталь по бронзе и др. Наиболее совершенными являются металлокерамические материалы (медь 68%, олово 8%, свинец 7%, графит 6%, кремний 4%, железо 7%).Равномерная смесь этих порошков прессуется под большим давлением и спекается при температуре 700-800 С. Легкоплавкие компоненты проникают в поры смеси и спаивают весь состав.

Обмотка возбуждения может питаться постоянным и переменным током. В случае питания переменным током в конструкции муфты есть отличия в части изготовления магнитопровода. Магнитопровод изготавливается из шихтованной электротехнической стали.

Ферропорошковые муфты представляют собой две концентрические стальные детали с обращенными друг к другу плоскими поверхностями, между которыми имеется небольшой воздушный зазор. Одна деталь жестко связана с ведущим валом, другая с ведомым валом привода. Если пространство между плоскими поверхностями заполнить очень мелким ферромагнитным порошком, то при наличии магнитного поля в воздушном зазоре частицы порошка образуют механические цепочки-связки, которые создадут силу сцепления одной детали с другой. В результате будет передаваться вращение от одной детали к другой. При снятии магнитного поля связки распадутся, механическая связь нарушится, система перестанет вращаться. Магнитное поле создается обмоткой с сердечником жестко закрепленном в пространстве. Магнитный поток сцепляется по магнитным материалам муфты (стальная деталь, кольцо, ферромагнитный порошок, ротор)

Для ферропорошковых муфт используют карбонильное, кремнистое, вихревое железо. Порошок получают путем разложения пентакарбонила железа (ферум (СО) 5 = ферум+5 СО). Ферромагнитный порошок применяется в равной смеси с разделителем-графитом, окисью цинка, тальком и др.Он предназначен для предохранения порошка от слипания, образования комочков.

В муфтах создаются специальные уплотнения для того чтобы порошок не выходил за пределя воздушных зазоров, и магнитные улавливатели, которые притягивают частицы порошка вышедшие из муфты.

В ферропорошковой муфте барабанного типа (рис. 2.2.2) ведущий вал 1 через немагнитные фланцы 2 соединен с ферфомагнитным цилиндром (барабаном) 3. Внутри цилиндра располагается электромагнит 4, связанный с ведомым валом 6. Обмотка 5 электромагнита питается через контактные кольца (на рисунке не показаны). Внутренняя полость 7 заполнена ферромагнитным порошком (чистое или карбонильное железо) с зернами размером от 4-6 до 20-50 мкм, смешанными с сухим (тальк, графит) или жидким (трансформаторное, кремнийорганические масла) наполнителем. При обесточенной обмотке и вращении ведущей части (барабана) электромагнит и ведомый вал остаются неподвижными, поскольку ферромагнитные зерна наполнителя свободно перемещаются относительно друг друга. Определенное трение между барабаном и электромагнитом существует, но оно относительно невелико.

Рис. 2.2.2. Электромагнитная ферропорошковая муфта барабанного типа

При подаче напряжения на электромагнит зерна ферромагнитного порошка теряют свободу перемещения под воздействием магнитного поля обмотки. Вязкость среды, находящейся в барабане, резко возрастает. Увеличивается сила трения между барабаном и электромагнитом. На ведомом валу появляется вращающий момент.
При определенном значении тока возбуждения ферромагнитный порошок и наполнитель полностью затвердевают. Барабан и электромагнит становятся жестко связанными. Можно рассматривать передаваемый момент как момент от силы трения, действующей между порошком и внутренней цилиндрической поверхностью барабана.

Благодаря тому, что зазор между барабаном и электромагнитом заполнен ферромагнитной смесью, его магнитная проводимость очень велика, что позволяет уменьшить необходимую МДС обмотки и увеличить коэффициент управления муфты, равный отношению передаваемой мощности к мощности управления (мощности электромагнита).

Ферропорошковые муфты целесообразно применять там, где требуются высокое быстродействе, большая частота включения и плавное регулирование скорости ведомого вала. Недостатком ферропорошковых муфт является меньшая передаваемая мощность при одинаковых габаритных размерах с муфтой трения.

Преимуществом порошковых муфт является их быстродействие, оно в 10 - 15 раз выше, чем у фрикционных электромагнитных муфт.

В гистерезесных муфтах (Рис 2.2.3)механические силы сцепления между ведущей и ведомой частью создаются за счет использования явления остаточного намагничивания магнитотвердых материалов. Магнитная система состоит из двух частей: одна связана с ведущим валом, другая с ведомым. Намагничивающая обмотка расположена на ведущем валу. Магнитный поток созданный обмоткой будет пересекать магнитные системы валов, причем его путь будет лежать по участкам с наименьшим магнитным сопротивлением, в результате этого гистерезисные магнитные диски ведомого вала будут притягиваться к зубцам сердечника ведущего вала (принцип работы напоминает принцип действия АД, только на роторе отсутствует обмотка)

Рис.2.2.3.Общий вид гистерезисной муфты

Электромагнитные тормозные устройства – электромагнитные аппараты дистанционного управления, предназначенные для фиксации положения механизма при отключенном электродвигателе. Подразделяются на колодочные, дисковые и ленточные.

Задание 2.а) Составьте логическую цепочку принципа работы фрикционной муфты.

Задание 2.б) Попытайтесь назвать элементы муфты, изображенной на рисунке 2.2.4.

Рис.2.2.4.

Задание 2.в)Закончите предложения:

Муфта-это..

Электромагнитная муфта это…

Ферромагнитный порошок-это…

Достоинства порошковых муфт…

Принцип действия гистерезесной муфты основан на …

Глоссарий

Закон электромагнитной индукции : пересечение проводника магнитным полем вызывает наведение эдс в проводнике.

Закон электромагнитной силы: взаимодействие тока в проводнике с магнитным полем вызывает создание электромагнитной силы, действующей на этот проводник.

Гистерезис- запаздывание изменения физической величины, характеризующей состояние намагниченности вещества, в частности стали

Характеристики реле

Основные характеристики реле определяются зависимостями между параметрами выходной и входной величины.

Различают следующие основные характеристики реле.

1. Величина срабатывания Хср реле – значение параметра входной величины, при которой реле включается. Величина срабатывания, на которую отрегулировано реле, называется уставкой .

2. Мощность срабатывания Рср реле – минимальная мощность, которую необходимо подвести к воспринимающему органу для перевода его из состояния покоя в рабочее состояние.

3. Управляемая мощность Рупр – мощность, которой управляют коммутирующие органы реле в процессе переключении. По мощности управления различают реле цепей малой мощности (до 25 Вт), реле цепей средней мощности (до 100 Вт) и реле цепей повышенной мощности (свыше 100 Вт), которые относятся к силовым реле и называются контакторами.

4. Время срабатывания tср реле – промежуток времени от подачи на вход реле сигнала Хср до начала воздействия на управляемую цепь. По времени срабатывания различают нормальные, быстродействующие, замедленные реле и реле времени. Обычно для нормальных реле tср = 50…150 мс, для быстродействующих реле tср 1 с.

Задание 3 : а) Составьте классификацию реле

Рис.2.2.5

Воспринимающая часть состоит из электромагнита 1, представляющего собой катушку, надетую на стальной сердечник, якоря 2 и пружины 3.

Исполнительная часть состоит из неподвижных контактов 4, подвижной контактной пластины 5, посредством которой воспринимающая часть реле воздействует на исполнительную, и контактов 6.

Рис.2.2.6

Рис.2.2.7.

Вопрос 3.Контакторы

Контакторы – это аппараты дистанционного действия, предназначенные для частых включений и отключений силовых электрических цепей при нормальных режимах работы. Контактор – это, пожалуй, самый старый аппарат, который применялся для управления электродвигателями. Наибольшее распространение во всем мире получили электромагнитные контакторы. Они являются основными коммутирующими аппаратами схем с токами более 50 А.

Классификация контакторов

Все контакторы классифицируются:

по роду тока главной цепи и цепи управления (включающей катушки) - постоянного, переменного, постоянного и переменного тока;

по числу главных полюсов - от 1 до 5;

по номинальному току главной цепи - от 1,5 до 4800 А;

по номинальному напряжению главной цепи: от 27 до 2000 В постоянного тока; от 110 до 1600 В переменного тока частотой 50, 60, 500, 1000, 2400, 8000, 10 000 Гц;

по номинальному напряжению включающей катушки: от 12 до 440 В постоянного тока, от 12 до 660 В переменного тока частотой 50 Гц, от 24 до 660 В переменного тока частотой 60 Гц;

по наличию вспомогательных контактов - с контактами, без контактов.

Рис.2.2.8. Общий вид контактора

Контакторы состоят из системы главных контактов, дугогасительной, электромагнитной систем и вспомогательных контактов .

Рис.2.2.9.Схема электромагнитного контактора

2.2.10.Устройство электромагнитного контактора : а)общий вид, б)дугогасительная система и контактная система, в)электромагнитная система

На металлической рейке 5 скобой 17 закреплены сердечник 2 магнитопровода с катушкой 4. Сердечник 2 имеет короткозамкнутый виток 3 и амортизирован пружиной 18. Через изоляционную колодку 15 на рейке крепятся три блока 1 полюсов, имеющие неподвижные контакт-детали 9 и дугогасительную катушку 16. Подвижная система контактора установлена на изолированном валу 7 и вращается в подшипниках 6. Подвижная контакт-деталь 11 закреплена в контактодержателе 13 и подпружинена пружиной 12. Соединение с контактным болтом обеспечивается гибкой связью 14. Каждый блок имеет дугогасительную камеру 10. На валу установлены также вспомогательные контакты 8.

Главные контакты осуществляют замыкание и размыкание силовой цепи. Они должны быть рассчитаны на длительное проведение номинального тока и на производство большого числа включений и отключений при большой их частоте. Нормальным считают положение контактов, когда втягивающая катушка контактора не обтекается током и освобождены все имеющиеся механические защелки.

Главные контакты могут выполняться рычажного и мостикового типа. Рычажные контакты предполагают поворотную подвижную систему, мостиковые – прямоходовую. На рисунке 2.2.11 представлена последовательно кинематика движения контакта контактора при замыкании.

Рис.2.2.11.

Как правило, у рычажных контактов оси вращения контакта не совпадают. Кроме того, контакты касаются раньше чем подвижная система достигнет конечного положения. В результате этого при замыкании и размыкании происходит перекатывание и проскальзывание подвижного контакта по неподвижному. Поэтому начальная точка касания при замыкании и она же, конечная точка касания и, соответственно, точка, где возникает дуга при размыкании оказывается смещенной по отношению к точке конечного касания контактов. Благодаря этому поверхности, которые обеспечивают длительное проведение тока и которые определяют переходное сопротивление контакта, отдалены от места возникновения дуги. Ну а проскальзывание контактов при достаточном контактном нажатии приводит к стиранию окисной пленки и различной скопившейся грязи с поверхности контакта, т. е. происходит самоочистка контактов. Так как контакты в коммутационных аппаратах являются, пожалуй, самыми слабыми частями аппарата, то мы видим, что в данном случае, сама конструкция силовых контактов контакторов позволяет длительно сохранять стабильным переходное контактное сопротивление, что в свою очередь, очень сильно влияет на надежность и безотказность работы контактора в целом. Но ничего не бывает идеальным, поэтому и у этой рычажных контактов есть свои недостатки. Проскальзывание при той шероховатости, которую обычно имеют поверхности контактов (в особенности работающих), вызывают дополнительный дребезг контактов при замыкании, а следовательно, и повышенный износ. Ну а полный отказ от проскальзывания и при недостаточно высоком нажатии приведет к быстрому перегреву контактов за счет их окисления. Поэтому тут приходится выбирать из дух зол меньшее.

Задание 4.а) Назовите три достоинства рычажных контактов, изображенных на рис. 2.2.11

Рычажные контакты требуют гибкой связи для присоединения к токопроводу, но и гибкая связь в ряде случаев является слабым местом контактной системы. Ее трудно осуществить на большие токи и ее механическая износостойкость оказывается ниже, чем других деталей.

Дальше разберемся с назначением и возможными конструкциями дугогасительной системы контакторов. Дугогасительная система обеспечивает гашение электрической дуги, которая возникает при размыкании главных контактов. Способы гашения дуги и конструкции дугогасительных систем определяются родом тока главной цепи и режимом работы контактора. Дугогасительные системы контакторов постоянного тока отличаются от дугогасительных систем контакторов переменного тока из за того, что сами принципы гашения дуги при постоянном и переменном токе отличаются.

Дугогасительные камеры контакторов постоянного тока построены на принципе гашения электрической дуги поперечным магнитным полем в камерах с продольными щелями. Магнитное поле, в подавляющем большинстве конструкций, возбуждается последовательно включенной с контактами дугогасительной катушкой. В 60-х годах прошлого столетия в СССР были созданы конструкции с постоянными магнитами, но распространения они не получили. Камеры с узкими щелями, которые могут быть прямыми и зигзагообразными значительно повышают отключающую способность и ограничивают размеры дуги и ее пламени за пределами камеры, однако полного гашения электрической дуги в объеме камеры с помощью этой камеры добиться не удается.

Контакторы переменного тока выполняются с дугогасительными камерами с деионной решеткой. При возниконовении дуга движется на решетку, разбивается на ряд мелких дуг и в момент перехода тока через ноль гаснет. Погасить дугу на переменном токе в принципе легче чем на постоянном, поэтому контакторы постоянного тока имеют более сложную систему дугогашения.

Электромагнитная система контактора обеспечивает дистанционное управление контактором, т. е. включение и отключение. Конструкция системы определяется родом тока и цепи управления контактора и его кинематической схемой.

Электромагнитная системасостоит из сердечника, якоря, катушки и крепежных деталей. На рисунке 6 показана схема включения электродвигателя с помощью электромагнитного контактора.

Вспомогательные контакты . Производят переключения в цепях управления контактора, а также в цепях блокировки и сигнализации. Они рассчитанны на длительное проведение тока не более 20 А, и отключение тока не более 5 А. Контакты выполняются как замыкающие, так и размыкающие, в подавляющем большинстве случаев мостикового типа.

Задание 4.б)Заполните таблицу 1

Таблица 1

Принцип действия контактора . В исходном отключенном положении, когда напряжения с катушки снято, подвижная система под действием пружины находится в нормальном положении. Контактор включают путем нажатия кнопки «Пуск». В катушке создается магнитный поток, который притягивает якорь к сердечнику. Одновременно с главными контактами замыкаются дополнительные (вспомогательные) контакты, которые блокируют(шунтируют) контакты кнопки «Пуск». Контактное нажатие осуществляется пружиной. На якоре установлена прокладка из немагнитного материала, которая уменьшает силу притяжения и при снятии напряжения с катушки якорь сразу отходит и не залипает.

Задание 4.в)Постройте логическую цепочку операций принципа действия контактора (всего семь пунктов)

Пускатели серии ПМЕ

Выбор электрического аппарата осуществляется по его функциональному назначению, роду тока и напряжения и величине мощности.

В качестве вводного аппарата и аппаратов отходящих линий принимаем автоматические выключатели, обеспечивающие функции коммутации силовых цепей и защиты электроприёмника, а также защиты сетей от перегрузки и короткого замыкания. Для включения, отключения ремонтных секций принимаем рубильники РБН–400.

Уставки токов расцепителей определяют по следующим соотношениям:

для силовых одиночных расцепителей:

а) ток уставки расцепителя ;

для силовых групповых электроприёмников:

а) ток уставки теплового расцепителя ;

б) ток уставки электродинамического расцепителя .

Согласно все автоматы серии ВА обладают достаточным коэффициентом чувствительности.

Для распределения электроэнергии в цеху устанавливаем шкаф распределительный ШК 85 с вводным выключателем ВА–51-39 с ручным управлением.

Выбранную пускозащитную аппаратуру сводим в таблицу 6.

Таблица 6 Пускозащитная низковольтная аппаратура

Электропотребитель

Электроаппарат

Наименование

Наименование

Крат-ность уставки

ШР -73505-54У2

D2HCS57Arus-100

D2HCS57Arus-40

D2HCS57Arus-68

D2HCS57Arus-7

4.6 Выбор высоковольтной ячейки и уставок защиты

Комплектные распределительные устройства выбирают по номинальному напряжению, номинальному току всех потребителей и проверяют по предельному току отключения. Таким требованиям соответствует ячейка КСО 366, параметры которой представлены в таблице 7 .

Таблица 7 Параметры ячейки КСО-366

Определим ток срабатывания максимальной токовой защиты МТЗ:

где k о – коэффициент отстройки, равный для МТЗ 1,1 ÷ 1,2; для токовой отсечки 1,1 ÷ 1,5 ;

k в =0,8 – коэффициент возврата реле, определяется по паспорту используемых в защите реле;

k тт =15 – коэффициент трансформации трансформаторов тока ячейки.

Определим величину токовой отсечки:

Проверка по коэффициенту чувствительности проводится, исходя из условия:

Так как 11>1,5, то коэффициент чувствительности данной защиты в пределах нормы.

4.7 Расчёт освещения цеха

Расчёт осуществляется в соответствии с методикой, изложенной в .

Исходные данные для расчёта.

Длина а=68 м.

Ширина b= 20 м.

Высота h=12 м.

Коэффициент отражения стен – 30%.

Коэффициент отражения потолка – 50%.

Высота рабочей поверхности h р =1,2 м.

Высота свеса h c =1 м.

Напряжение сети – 220 В.

Рассчитаем электроосвещение цеха по методу использования светового потока.

Выбираем светильник типа «Глубокоизлучатель» с лампами накаливания, в соответствии с высотой помещения .

Определяем расчетную высоту светильника над рабочей поверхностью, принимаем расстояние от потолка равным

Определяем расстояние между светильниками, принимая как выгоднейшее отношение L/H=0,91 .

Тогда расстояние между светильниками

L=0,91∙9,8=8,9 м

Расстояние до стен принимаем 0,5.

Для определения количества рядов делим ширину помещения В на L:

В соответствии с указанными размерами цеха и полученными расстояниями размещаем светильники по цеху в плане, как показано на рисунке 25.

Рисунок 25 – Размещение светильников

Выбираем норму освещенности для данного производства, считая, что в цехе обрабатываются детали с точностью до 1 мм.

Определяем показатель помещения:

По полученным данным находим коэффициент использования светового потока Ки = 0,62, считая коэффициент отражения стен и потолка равным соответственно 30% и 50% .

Находим расчетный световой поток одной лампы.

где, Ен – нормируемая освещенность общего освещения в цехе (при 30 лм);

kз – коэффициент запаса;

S – площадь помещения;

Z – постоянный коэффициент 1,3 ;

n – количество светильников;

kи – табличные данные .

Подбираем по справочнику ближайшую по световому потоку Fл=8100 лампу НГ 220-500 мощностью 500 Вт и напряжением 220 В.

Пересчитываем фактическую освещенность при выбранной мощности лампы.

лм.

Определяем суммарную мощность, потребляемую осветительной сетью.

Контакторы и магнитные пускатели - назначение, категории применения, основные параметры. Серии контакторов постоянного и переменного тока, их конструкции и условия работы. Вакуумные контакторы. Магнитные пускатели, условия их работы и конструкция. Схемы нереверсивного и реверсивного пускателей. Выбор контакторов и пускателей .

Автоматические выключатели. Назначение, устройство и принцип действия универсальных и установочных автоматов, виды расцепителей, роль механизма свободного расцепления. Быстродействующие автоматы. Автоматы гашения поля. Выбор автоматов .

Рубильники и переключатели .

Предохранители низкого и высокого напряжения Принцип действия и условия работы плавких вставок. Конструкции предохранителей, времятоковая характеристика. Быстродействующие предохранители для защиты полупроводниковых приборов. Выбор предохранителей. Предохранители высокого напряжения ..

Контроллеры, командоаппараты и реостаты - назначение, конструкции, схемы. Виды резисторов и их выбор .

Электромагнитные муфты - фрикционные, ферропорошковые, гистерезисные и индукционные .

7.1. Методические указания

При изучении каждого типа электрических аппаратов необходимо усвоить следующий круг вопросов: назначение и принцип действия аппарата, его разновидности, устройство и электрическая схема; требования к нему; обозначение аппарата и его элементов на схемах; назначение и устройство отдельных узлов аппарата; материалы, применяемые для изготовления важнейших деталей; основные параметры аппарата, технические данные, режимы работы, его достоинства и недостатки; схемы замещения, характеристики (в графическом изображении); основные количественные зависимости (формулы), характеризующие работу аппарата и его свойства.

Необходимо также обратить внимание на отличия одних аппаратов от других, например, автоматов от контакторов, командоконтроллеров от силовых контроллеров, реостатов от резисторов. Нужно уяснить взаимодействие аппаратов, используемых в схемах автоматического управления, например, контакторов - с командоаппаратами, реле, резисторами.

Следует обратить внимание на командоаппараты, основанные на использовании герконов и оптронов.

Требуется также хорошо ознакомиться с устройством хотя бы одного промышленного образца аппарата каждого типа (контактор постоянного тока, магнитный пускатель, командоконтроллер и т.д.) по рисункам и чертежам из литературы, каталогам на промышленное электрооборудование.

Не нужно стараться заучить численные значения параметров аппарата по справочным и каталожным данным, достаточно иметь представление о порядке этих величин.

→ Основные определения

1. Основные определения и классификация электрических аппаратов
1.1. Основные определения
Электрическими аппаратами (ЭА) называются электро технические устройства для управления. потоками энергии и информации, режимами работы, контроля и защиты технических систем и их компонентов .
Электрические аппараты служат для коммутации, сигнализации и защиты электрических сетей и электроприемников, а также управления электротехническими и технологическими установками и находят исключительно широкое применение в различных областях народного хозяйства: в электроэнергетике, в промышленности и транспорте, в аэрокосмических системах и оборонных отраслях, в телекоммуникациях, в коммунальном хозяйстве, в бытовой технике и т. д. При этом в каждой из областей диапазон используемой номенклатуры аппаратов очень широкий. Можно определенно сказать, что не существует области, связанной с использованием электрической энергии, где бы не применялись электрические аппараты.
В основе функционирования большинства видов электрических аппаратов лежат процессы коммутации (включения и отключения) электрических цепей. К основным явлениям, сопровождающим работу всякого электрического аппарата, относятся: процессы коммутации электрических цепей, электромагнитные и тепловые процессы. Под электромагнитными процессами понимают электромеханические и индукционные явления, электромагнитные взаимодействия элементов аппарата и др.
Тепловые процессы оказывают непосредственное влияние на работу аппарата и зависят от режима работы аппарата. Установлены для электрических аппаратов три вида режимов работы:
- длительный (в этом режиме при длительном прохождения тока аппарат нагревается до установившегося значения температуры);
- кратковременный (в этом режиме при отключенном состоянии между отдельными включениями температура нагрева аппарата снижается практически до температуры окружающей среды);
- повторно-кратковременный (температура нагрева за время паузы тока не успевает снизиться до температуры окружающей среды).
Два последних режима характеризуются относительной продолжительностью включения ПВ, %. Стандартные значения ПВ: 15; 25; 40; 60%.
1.2. Классификация электрических аппаратов
Исключительно широкий диапазон областей применения электрических аппаратов определяет многообразие видов их классификации.
Электрические аппараты классифицируют по признакам:
1) по величине рабочего напряжения - низковольтные (до 1000 В) и высоковольтные (более 1000 В);
2) по величине рабочего или коммутируемого тока - слаботочные (аппараты управления, защиты, сигнализации) и сильноточные, используемые в силовых цепях;
3) по выполняемой функции:
- коммутирующие аппараты: выключатели, разъединители, контакторы, магнитные пускатели;
- управления, защиты, сигнализации: реле различного типа, путевые и конечные выключатели (контактные и бесконтакные);
- командные: кнопки управления, ключи, командоконтроллеры и командоаппараты;
- аппараты защиты: разрядники, плавкие предохранители. К электрическим аппаратам относят также пускорегулиро вочные сопротивления.
По признаку коммутации и элементной базы электрические аппараты разделяются на:
- электромеханические
- статические
- гибридные.
Электромеханические аппараты отличаются наличием в них подвижных частей. Электромеханические аппараты имеют подвижную и неподвижную контактные системы, осуществляющие коммутацию электрических цепей.
Статические аппараты выполняются на основе силовых полупроводниковых приборов: диодов, тиристоров, транзисторов, а также управляемых электромагнитных устройств: магнитных усилителей, дросселей насыщения и др. Аппараты этого вида обычно относятся к силовым электронным устройствам, так как используются для управления потоками электрической энергии.
Гибридные электрические аппараты представляют со бой комбинацию электромеханических и статических аппаратов.
По функциональному назначению различают:
- аппараты управления НИ и ВН;
- аппараты распределительных устройств низкого напряжения;
аппараты автоматики.
Электрические аппараты классифицируют также:
по напряжению: аппараты НН - низкого (до 1000 В) И аппараты ВН - высокого (от единиц до тысяч киловольт) напряжения;
ПО значению коммутируемого тока: слаботочные аппараты (до 5 А) и сильноточные (от 5 А до сотен кило-ампер);
по роду тока: постоянного и переменного;
по частоте источника питания: аппараты с нормальной (до 50 Гц) и аппараты с повышенной (от 400 Гц до 10 кГц) частотой;
по роду выполняемых функций: коммутирующие, регулирующие, контролирующие, измеряющие, ограничивающие ПО току или напряжению, стабилизирующие;
- по исполнению коммутирующего органа: контактные и бесконтактные (статические), гибридные, синхронные, без дуговые.
1.3. Аппараты высокого напряжения
Аппараты высокого напряжения по функциональному признаку делятся на следующие виды:
- коммутационные аппараты (выключатели, выключатели нагрузки, разъединители);
- измерительные аппараты (трансформаторы тока и напряжения, делители напряжения);
- ограничивающие аппараты (предохранители, реакторы, разрядники, нелинейные ограничители перенапряжений);
- компенсирующие аппараты (управляемые и неуправляемые шунтирующие реакторы);
- комплектные распределительные устройства.
К электрическим аппаратам относят также различные виды датчиков, имеющих законченное конструктивное исполнение. Назначением большинства датчиков, относящихся к электрическим аппаратам, является преобразование параметров раз личных по природе физических величин в электрические сигналы информационного характера. Такие датчики широко ис пользуются в различных системах автоматического управления.
1.4. Электрические аппараты управления
Электрические аппараты управления предназначены для управления режимом работы электрооборудования и подразделяются на следующие виды:
- контакторы;
- пускатели;
- контроллеры;
- электрические реле управления;
- командоаппараты;
- рубильники;
- электромагниты управления
- электроуправляемые муфты.
Контакторы служат для многократных включений и отключений электрической цепи при токах нагрузки, не превышающих номинальный, а также для редких отключений при токах перегрузки (обычно 7-10-кратных по отношению к номинальному). Род тока определяет конструктивные особенности контакторов. Поэтому контакторы переменного и постоянного токов обычно не взаимозаменяемые. Однако имеются контакторы, совмещающие в себе возможности коммутации как постоянного, так и переменного токов.
Пускатели предназначены для включения и отключения двигателей и отличаются от контакторов в основном наличием встроенной системы, осуществляющей защиту двигателей от токов перегрузки.
Контроллер - это электрический аппарат с ручным управлением, предназначенный для изменения схемы подключения электродвигателя к системе электропитания, а также для коммутации обмоток трансформаторов.
Электрические реле управления работают в схемах автоматического управления электроприводами. Коммутируемые токи не превышают 10 А, и поэтому дугогасительные устройства в них не применяются.
Командоаппараты предназначены для переключений в цепях управления силовых электрических аппаратов (контакторов, пускателей).
Рубильники рассчитаны практически на весь диапазон номинальных токов. Отключение электрической цепи рубильником обычно производится в обесточенном состоянии или при небольших токах.
Электромагниты управления применяются в исполнительных механизмах различного промышленного назначения, а также в качестве самостоятельного функционального блока.
Электроуправляемые муфты предназначены для передачи потока механической энергии или крутящего момента
ог ведущей части муфты к ее ведомой части.
В зависимости от рода связи между ведущей и ведомой
частями муфты подразделяются на три основных вида:
- электромагнитные муфты с механической связью;
- электромагнитные порошковые муфты;
- индукционные муфты.
1.5. Аппараты распределительных устройств
Аппараты распределительных устройств низкого напряжения (до 1000 В) предназначены для защиты электрооборудования от различных аварийных режимов, связанных с появлением токов перегрузки и короткого замыкания, недопустимого снижения напряжения, появлением токов утечки на землю при повреждении изоляции, обратных токов и т. п.). Эти аппараты подразделяются на автоматические выключатели и низковольтные предохранители.
Автоматические выключатели (автоматы) включают ся и отключаются относительно редко. Автоматы на разные номинальные токи способны отключать большие токи короткого замыкания (до 150 кА). При этом отключение происходит с выраженным токоограничивающим эффектом. Автоматы имеют обычно сложные контактно-дугогасительные устройства.
Низковольтные предохранители служат для защиты электрооборудования от больших токов перегрузки и токов короткого замыкания. Различают предохранители с открытой плавкой вставкой, закрытые (плавкая вставка размещена в патроне) и предохранители с наполнителем, в качестве которого используется кварцевый песок, мел и др.
1.6. Электрические аппараты автоматики
Электрические аппараты автоматики - это технические средства, с помощью которых выполняются различные операции с сигналами (получение и сбор, считывание, формирование, обработка, преобразование, адресование, сравнение, хранение, размножение, изменение уровня, логические операции и т. п.), если хотя бы один из сигналов (на входе или выходе аппарата) электрический .
Соответствующие операции с неэлектрическими или электрическими сигналами выполняются в тракте переработки информации.
Сигналом называется воспринимаемая или передаваемая аппаратом информация о вещественном или энергетическом параметре. Под вещественным параметром понимают размер, плотность, цвет и т. п. Под энергетическим параметром - скорость, давление, температура, напряжение, ток, сокр, КПД.
Сигналы могут быть периодическими и непериодическими, непрерывными и дискретными.
Тракт переработки информации включает, как правило, следующие устройства:
- первичные преобразователи (датчики), преобразующие контролируемую (входную, как правило, неэлектрическую) величину в выходной электрический сигнал;
- распределители (коммутаторы), распределяющие информацию в виде электрических сигналов по различным каналам связи;
- сумматоры, логические элементы, регулирующие органы, обрабатывающие информацию, поступающую по различным каналам (входам) в виде электрических сигналов и вырабатывающие команду (сигнал) для исполнительных устройств;
- исполнительные аппараты.
К последнему типу устройств относятся собственно электрические реле автоматики, электрогидровентили, электрогидрокраны, электроклапаны, магнитные опоры и подвесы, задвижки и др.
Электрические реле автоматики - это устройства для защиты электрических систем, сетей и цепей, а также других объектов от несанкционированных режимов работы; для выработки сигналов, оповещающих о приближении нештатных ситуаций и об их наступлении; для усиления, размножения, обработки, кодирования и запоминания поступающей информации.
К разновидностям электрических реле автоматики относятся герконовые реле, основу которых составляют герметизированные магнитоуправляемые контакты (герконы), а также релейные аппараты с механическим управлением (входом) и электрическим выходом: кнопки, ключи, клавиатуры, тумблеры, микровыключатели.

На всех этапах производства, передачи, распределения и потребления электрической энергии практически во всех отраслях народного хозяйства важную роль играют электрические аппараты.

Электрические аппараты (контакторы, пускатели, электромагниты) входят в состав автоматических, полуавтоматических и ручных систем управления электроэнергетическими установками, электроприводами, устройствами электрического освещения, электротехнологическими установками и т. д. Их применяют для управления пуском, регулирования частоты вращения и осуществления электрического торможения электродвигателей. С помощью электрических аппаратов производится регулирование токов и напряжений генераторов. Они осуществляют функции контроля и защиты установок, потребляющих электроэнергию.

Таким образом, использование электромеханических устройств позволяет управлять по заданной программе работой электрических и неэлектрических объектов, а также защищать эти объекты от нежелательных режимов - перегрузок, перенапряжений, недопустимо больших токов и т. д.

Многие электрические аппараты предназначаются для выполнения какой-либо одной функции в системе управления или защиты, однако имеются и многофункциональные аппараты.
Работа электромеханических устройств в системах автоматики основывается на ряде физических явлений: взаимодействии ферромагнитных тел в магнитном поле, силовом взаимодействии проводника с током и магнитного поля, возникновении ЭДС в катушках и вихревых токов в массивных телах из электропроводящего материала при появлении переменного магнитного поля, тепловом действии электрического тока и др.

Основными частями электрических аппаратов являются

  • электрические контакты (неподвижные и подвижные, главные и вспомогательные),
  • механический или электромагнитный привод контактной группы (приведение в соприкосновение и прижатие подвижных и неподвижных контактов),
  • рукоятки (кнопки) управления и рабочие обмотки.
    Электрический аппарат срабатывает, т. е. осуществляет замыкание и размыкание контактов или соединение подвижной и неподвижной частей электромагнитного механизма, под воздействием:

1) обслуживающего персонала, нажимающего на рукоятки (кнопки) управления; в этом случае аппарат называют ручным или полуавтоматическим;
2) электрических величин, характеризующих работу контролируемого (управляемого) объекта, изменяющих или на рабочих обмотках; в этом случае аппарат называют автоматическим.

В зависимости от функций, которые должен обеспечить аппарат, к нему могут предъявляться различные требования, но главными требованиями являются надежность и точность работы: надежность соединения контактов, малое электрическое сопротивление в месте соединения контактов, точность зависимости момента срабатывания от значения управляющего тока или напряжения.

По назначению различают следующие электрические аппараты

1) коммутационые (разъединители, выключатели, переключатели);
2) защитные, основным назначением которых является защита электрических цепей от недопустимо больших токов, перенапряжений, снижения и х д. (предохранители, реле защиты);
3) пускорегулирующие, предназначенные для управления электроприводами и другими промышленными потребителями электроэнергии (контакторы, пускатели, реле управления);
4) контролирующие и регулирующие, предназначенные для контроля и поддержания в заданном диапазоне основных параметров процесса (датчики и реле);
5) электромагниты (силовые), служащие для удерживания или
перемещения объектов в производственном либо управленческом
процессе.

В данной главе рассматриваются электрические аппараты (реле, пускатели, контакторы и электромагниты) и некоторые схемы управления и регулирования, использующие электромеханические устройства.

Прежде всего, рассмотрим особенности работы электрических контактов и работу электромагнитного механизма - привода контактной группы электрических аппаратов.

 

 

Это интересно: